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The AI revolution:

manually constructed algorithms

⇝

automatic adaptation to given set / distribution of inputs

= automation of programming
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Key idea:

automate the analysis and design of algorithms
using methods from machine learning, statistics, optimisation

⇝ empirical performance models,
⇝ automated algorithm selection & configuration, ...

Important special case:

AutoML
– automated analysis & design of ML algorithms
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Neural network verification

▶ neural networks tend to be sensitive to input perturbations
⇝ lack of robustness, vulnerability to adversarial attacks

horn hot dog

Source: https://kennysong.github.io/adversarial.js/
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Neural network verification

▶ neural networks tend to be sensitive to input perturbations
⇝ lack of robustness, vulnerability to adversarial attacks

Stop 120 km/h

Source: https://kennysong.github.io/adversarial.js/
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Neural network verification

▶ neural networks tend to be sensitive to input perturbations
⇝ lack of robustness, vulnerability to adversarial attacks

▶ use formal reasoning techniques for robustness verification
(learning + reasoning)

Local robustness in classifiers
(see, e.g., Liu et al., 2021)

Key idea: ensure all x close to given input x0
are classified with same (correct) label.

∀x : ∥x− x0∥∞ ≤ ϵ ⇒ f (x) = f (x0)
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Neural network verification: Challenges

▶ diverse network architectures: layer operations, activation
functions, ...

▶ diverse verification approaches & algorithms: MIP-based,
SMT-based, ...

▶ computational complexity
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What is the SOTA in NN robustness verification?

▶ verification methods typically evaluated on
small # of benchmarks, against different/ill-specified baselines

▶ VNN Competition (since 2020):
seeks to determine “winner” based on performance ranking

Step 1: New benchmark

▶ large, diverse set of benchmarks (79 image classifiers)
& verifiers (8 CPU- & GPU-based)

Step 2: In-depth empirical evaluation
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What is the SOTA in NN robustness verification?
(CPU-based methods, ReLU networks, CIFAR)
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What is the SOTA in NN robustness verification?
(CPU-based methods, ReLU networks, CIFAR)
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Similar results for other ϵ ...
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... and for GPU-based methods
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What is the SOTA in NN robustness verification?

▶ no single best verifier, performance complemantarity,
for CPU- and GPU-based methods,
different networks, data sets, ϵ

▶ not all verifiers work on all network types

▶ major potential for parallel portfolios, algorithm selection

⇝ König, Bosman, Hoos, van Rijn, AAAI SafeAI 2023 Workshop
⇝(best paper award); extended version published at JMLR 2024.
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Conclusions

▶ AI revolution: explicit ⇝ automated programming

▶ AutoML: automated analysis & design of ML algorithms

▶ robustness verification requires advanced reasoning techniques,
adaptation to diverse network architectures, use cases

▶ automated configuration, selection, portfolio construction
are key to next-generation NN robustness verification
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