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Prediction and Causal Estimation

� One of the major successes of modern machine learning is their
powerful predictive capability.



Prediction and Causal Estimation

� However, accurate prediction does not guarantee accurate causal
estimation.1

1Efron, B. (2020). Prediction, estimation, and attribution.



Spurious association problem

� Some elements of the observed covariates x= (x1, x2, · · · , xp) are
predictive to the outcome y, but they are not the true causes.

� Classical machine learning often relies on the empirical risk
minimization (ERM)

min
α

R(α) = E[L(ŷ(x;α), y)].

� ERM leverages causal and non-causal information in x.

� A parametric model ŷ(x;α) learned by ERM

1. is biased for causal estimation;

2. cannot generalize its prediction under interventions.



Environments

� We will leverage multi-environment data to distinguish causality.

� Each environment e has distribution pe(X, Y).

� Observations per environment are (Xe
i , Ye

i )∼ pe(X, Y), e ∈ E .



Data generating process

Consider a linear structural equation model

ye← (β∗)>xe + εe, e ∈ E

� E : a collection of environments.

� S ⊂ {1, 2, · · · , p}: the index set of direct causes.

� x: observed covariates; xS are the causes, x\S are the spurious
covariates.

� β∗: causal coefficients or direct causal effects; β∗S 6= 0, β∗\S = 0.

� Goal: (i) estimate S and β∗; (ii) make predictions based on causes.



Formalize spurious association

� Spurious association is an endogeneity problem

xe
\S 6⊥⊥ ε

e, hence E[εe|xe] 6= 0

� Possible reasons

1. Unobserved confounding y← ε→ x\S

2. Observing descendents y→ x\S

3. Observing colliders y→ x1← x2, x1, x2 ∈ x\S



Assumptions

� (i) Linear DGP ye← (β∗)>xe + εe; it will be relaxed to nonlinear models
for methodology

� (ii) Moment conditions: E[εe] = 0, Var[εe], Var[xe
j ]<∞ for all

j ∈ {1, 2, · · · , p}

� (iii) Exogeneity of causes: the observed causes

xe
S ⊥⊥ ε

e,

which is weaker than standard assumption xe ⊥⊥ εe.

� (iv) Invariance: across environments

E[ye|Pa(ye) = c] = E[ye′ |Pa(ye′) = c], for all e, e′ ∈ E ,

while pe(x) changes.



Invariance of causality

� Philosophy: constant conjunction
(Hume, 1740); Econometrics:
autonomy and modularity
(Haavelmo, 1944, Hoover 2008);
Computer Science: independent
causal mechanism (Schölkopf, et al.,
2021)

� Invariant Causal Prediction (Peters,
Bühlmann and Meinshausen, 2016)

� Invariant Risk Minimization
(Arjovsky et al., 2019)

A more comprehensive history is in
Peters et al. (2017), Chapter 2.1

1Elements of causal inference: foundations and learning algorithms, 2017.



Our main idea

1. Find an idealized optimization problem with the causal coefficients as
the solution.

2. Relax it to be a feasible optimization problem with the causal
coefficients as a solution.

3. Restore the identification using multi-environment data.



Idealized optimization in an environment

� Consider a predictor ŷ(x,α) = α>x

� Throughout, α denotes the model parameters and β∗ denotes the
unknown causal parameters.

� Direct ERM minαR(α) = E[(1/2)(ŷ(x,α)− y)2] produces biased
estimate α̂ 6= β∗ due to spurious association.

� Adding simple constraints will provide causal optimality

min
α

R(α)

s.t. αj = 0, j /∈ S (the index set of causes).

Its solution α̂= β∗.



First order condition

� We will turn the constrained optimization into an unconstrained
optimization while keeping causal optimality.

� Derive the first order condition of constrained optimization by the
directional derivative method.

� Directional derivative in direction v is

DvR(α) := lim
t→0
(R(α+ tv)−R(α))/t= 〈∇R(α), v〉

� Principle: the first-order condition for optimality is that the directional
derivative in all feasible directions vanishes (Marban, 1969).



Feasible directions

� Feasible directions are where the optimizer can go without violating
the constraints. They are tangent to the constraint surface in Rp.

� Our constraints gj(α) = αj = 0 for j /∈ S

� The feasible directions form a linear spaceU = span{ej : j ∈ S} with
basis vector ej.



Single environment objective

� Given the feasible directions, the first order condition is

Dej
R(α) = 〈∇R(α), ej〉= 0, for j ∈ S,

or equivalently written with Hadamard product ◦

‖∇R(α) ◦β∗‖2 = 0

� Relaxation: the causal coefficients β∗ by construction is the optimum,
which satisfy the first order condition as

‖∇R(β∗) ◦β∗‖2 = 0.

� In other words,

β∗ ∈ argmin
α
‖∇R(α) ◦α‖2 . (1)



No free lunch

� The objective minα ‖∇R(α; X, Y) ◦α‖2

- Only depends on the observational data.

- Unlike R(α; X, Y), it has β∗ as an optima.

- It is simple and easy to compute.

� However, the optima is not unique, which can be β∗, α̂ERM, 0, and
others.



Multi-environment objective

� Causal coefficients β∗ is invariant and shared across environments.

� We aggregate single-environment objectives over multiple
environments E

min
α

fE (α) :=
1
|E |

∑

e∈E

�

‖∇Re(α) ◦α‖2

�

. (2)

� Due to invariance assumption: (1) β∗ ∈ arg min fE (α), and (2)
argminα fE (α) =

⋂

e∈E argminα ‖∇Re(α) ◦α‖2 so |E | ↑ helps.



Last step

We need to remove the 0-vector from the minimizers if β∗ 6= 0

� If a set of variables C are known to be exogenous, i.e. Xj ⊥⊥ ε, j ∈ C, we
can safely regress over this set of variables (Approach 1).

� Modify the objective with α̃= α ◦ (1− 1C) + 1C,

min
α

fE (α) =
1
|E |

∑

e∈E
‖∇Re(α) ◦ α̃]‖2 (3)

� We can show fE (β
∗) = 0 while fE (0)> 0 almost surely when β∗C 6= 0

� Alternatively, we can use the risk function as a regularization as
Re(0)≥ Re(β∗). It recovers ERM for one environment (Approach 2).

min
α

1
|E |

∑

e∈E

�

‖∇Re(α) ◦α‖2 +λrR
e(α)

	

, λr > 0. (4)



Algorithm

Conditional causal optimization (CoCo) by double gradient:



Example

� The data generation follows

xe
2←N (m

e
2, (γe)2)

xe
1←N (m

e
1, (γe)2)

ye←3xe
1 + 2xe

2 +N (0, 1)

xe
3←γ

eye +N (0, (γe)2)

� The two environments
correspond to parameters
(m(1)1 , m(1)2 ,γ(1)) = (2, 0.5, 2),
(m(2)1 , m(2)2 ,γ(2)) = (3,−1, 0.5), and
β∗ = (3, 2, 0).



Analytic connections with IRM

� Invariant Risk Minimization (Arjovsky et al., 2019) is a popular
approach for causal representation learning under spurious
association by solving

min
α

∑

e∈E

�

Re(α; f (xe
i ;α))

︸ ︷︷ ︸

Empirical risk

+λ
�

∇w|w=1.0Re(α; w · f (xe
i ;α))

�2

︸ ︷︷ ︸

IRM regularization

�

.

� We find for Linear-Gaussian and Linear-Bernoulli outcome models,
IRM regularization is a directional derivative

�

∇w|w=1.0Re(α; wα>xe)
�2
= (〈∇Re(α),α〉)2

� It explains some success of IRM because β∗ ∈ argminα(〈∇Re(α),α〉)2

� It suggests IRM regularization could fail because it is a loose lower
bound as (〈∇R(α),α〉)2 ≤ p‖∇R(α) ◦α‖2

2



Geometric connections with IRM

Back to the toy example, CoCo solutions are always less than that by IRM
regularization



Identification

� The goal is to find sufficient conditions for the uniqueness of the
solutions for minα fE (α) =

1
|E |

∑

e∈E ‖∇Re(α) ◦ α̃]‖2

� For each α̂ ∈ arg minα fE (α), there exists H ⊂ {1, 2, · · · , p} such that
α̂= (α̂H, α̂\H = 0)> and

∇E[(y− α̂>Hxe
H)

2] = 0.

� We call H an invariant set if regression on xe
H, xe′

H for any environments
e, e′ produces the same α̂e

H = α̂
e′
H.



Sufficient conditions for identification

Theorem. Under Assumptions (i-iv) and (v) Effective interventions: there
is only one invariant sets H, C ⊂H ⊂ {1, 2, · · · , p}. Then

β∗ = argmin
α

1
|E |

∑

e∈E
‖∇Re(α) ◦ α̃]‖2 ,

where α̃= α ◦ (1− 1C) + 1C.

� The effectiveness can be checked from data, though it can be
computationally expensive.

� It guarantees the identification of the whole vector β∗.

� We also provide a simple to check sufficient condition based on the
rank of Gram matrix. It guarantees identification of β∗C for the effects
of exogenous treatment variables in C.



Generalize to nonlinear models

� Consider the nonlinear data generation and predictor:

ye← f (B∗xe
S;γ∗) + εe, ŷe = f (Axe;γ).

� The optimality of the causal model still holds for the constrained
optimization: minαR(α) s.t. αj = 0, j /∈ S

� The same optimization objectives can be derived using the directional
derivative similarly to the linear settings.

� This nonlinear model contains the fully-connected neural net as a
special case.



Robust prediction

� The fitted model has local optimality when applied to a new
environment.

� Proposition. Suppose α̂minimizes CoCo objective with fE (α̂) = 0.
Suppose a new environment l satisfies

pl(x, y) =
∑

e∈E
wep

e(x, y),
∑

e∈E
we = 1,

then ∂
∂ απ

Rl(α)|α=α̂ = 0, π= supp(α̂).



Empirical studies



Causal estimation

� Consider 5 independent cases; each case is represented by a graph below

� Data in each case are collected from two environments

� Suppose X1 is known as an exogenous variable



Causal estimation

The mean absolute error of the β∗ estimates

RVP, V-REx, Dantzig, IRM are related optimization methods.



Robust prediction: synthetic data

� x1 is a true cause, x2 is spurious, the DGP is linear, the yellow points
are data.

� Consider a linear predictor (correctly specified) and a nonlinear
predictor (misspecified).

� Heatmap is the predictive error. Causal optimization better generalizes
beyond the data region.



A nonlinear, non-Gaussian case

� Data generation:

xe
1←

∑K
k=1

1
KN (µk, I)

ye← Categorical(p1, · · · , pK)
xe

2← (1− pe)δue
ye
+ peδue

k1
,

pk =N (xe
1;µk, I)/

∑K
k′=1N (x

e
1;µk′ , I), k1 ∼Multinomial(1/K, · · · , 1/K).

� Test in a new environment with distribution shift.



Robust prediction: unstructured data

Colored-MNIST (semi-synthetic):

� Data generation: Even/odd digits→ ye
i ∈ {0, 1} → color ∈ {green, red}.

� Covariates are the colored digits xe
i ∈ R

28×28×2

� Causal: shape→ ye
i , Spurious: color→ ye

i .

� Evaluate at a new environment with different label-color relationships.



Predictive accuracy

Predictor is a fully connected neural network.
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Methods ERM IRM V-REx CoCo Random guess Oracle

Test env. accuracy 31.1 (0.3) 46.5 (4.1) 31.8 (1.4) 74.7 (0.2) 50 74.8

IRM (M. Arjovsky et al., 2019), V-REx (D. Krueger et al., 2020)



Robust prediction: real-world data

� Environments: camera locations.

� Classify coyotes or raccoons, ye
i ∈ {0, 1}.

� Causal: animal shape→ ye
i , Spurious: physical factors→ ye

i .

� Evaluate on the images taken at a new camera location.



Prediction accuracy

Predictive accuracy is evaluated with images from a new camera
location.

Wildlife
Training Environment Testing Environment

ERM 99.6 (0.2) 58.4 (0.8)
IRM 83.4 (0.7) 84.9 (0.8)
V-REx 96.2 (0.4) 67.3 (1.6)
CoCo 86.1 (0.3) 85.2 (0.3)

Random guess 50 50



Takeaway

� Causal optimization by double gradient enables accurate causal
estimation and robust prediction when there is spurious association.

� Multiple environments and the invariance assumption help identify
the causal model.

� It can potentially be applied to any differentiable model at large scale.

� Worth considering regularizations on the direction of derivatives,
beyond the magnitude of parameters.

� Representation learning?



� Thank you!

� M. Yin, Y. Wang, and D.M. Blei
Optimization-based Causal Estimation from Heterogeneous
Environments
Journal of Machine Learning Research, 2024

m.yin@ufl.edu


