Exploration-Exploitation-Engagement in Multi-Armed Bandits with Abandonment

Zixian Yang

EECS, University of Michigan, Ann Arbor

zixian@umich.edu

Joint work with Prof. Xin Liu (Shanghai Tech) and my advisor Prof. Lei Ying (Michigan)

Motivation and Applications

Short video recommendations

Content recommendations in online education

The MAB model overlooks user abandonment.

Exploration-Exploitation-Engagement: A Simple Model

- $\square \quad \mathbf{M} \text{ arms } \{a_1, a_2, \cdots, a_M\}$
- □ Consider *K* episodes. State at step *h* of the *k*th episode is $S_{k,h} \in \{0, 1\}$
- **D** Bernoulli rewards with mean $\mu(a_i)$

Assumption

The user is less likely to abandon the system when getting higher reward

```
\mathbf{q}(\mathbf{S}_{k,h}=\mathbf{s},\mathbf{R}_{k,h}=\mathbf{r}) \leq \mathbf{q}(\mathbf{S}_{k,h}=\mathbf{s}',\mathbf{R}_{k,h}=\mathbf{r}') \text{ if } \mathbf{s}+\mathbf{r} > \mathbf{s}'+\mathbf{r}'.
```


Problem Definition

- Baseline π* : A genie-aided, optimal policy is always pulling the arm with the highest mean
- Regret for a given policy: the difference between the expected total reward achieved by the optimal policy, π^{*}, and that achieved by the given policy.
- **Goal:** minimize the regret

Choose arm $a \in \operatorname{argmax}_{a} \tilde{\mu}_{t}(a)$

□ KL-ULCB ---- use KL divergence instead of Euclidean distance.

Main Results

□ Theoretically, KL-ULCB is asymptotically optimal. (number of episodes $K \to \infty$) □ Empirically, KL-ULCB performs significantly better than other algorithms.

