
You Only Cache Once:
Decoder-Decoder Architectures for

Language Models

Yutao Sun

Tsinghua University

syt23@mails.tsinghua.edu.cn

Intelligence as Infrastructure

2* Average monthly bills per house-hold in the US

Electric
bills

$ 117$ 50

Water
bills

Intelligence
bills

$ 25,920

Intelligence
bills

$ 130
(Expected)

200x

Rough estimation based on current GPT-4 services

Average cost per GPT-4 call ($ 0.06) x

Estimated average calls per house-hold (24h x 60m x 10 =

14,400) x 30d = $ 25,920

Why are Transformer LLMs High-Cost?

• Speed/Throughput/Latency: Memory access is much slower

than computation

• Energy: Memory access needs much more energy than

computation

• Number of GPUs to host a model: Memory capacity of one

GPU is insufficient to host a model

YOCO
Motivation

3

• Hybridization does not sound a great solution

• 4x maximal acceleration and KV cache saving

• Still quadratic complexity

• Towards the optimal acceleration for lossless sequence modeling

• 𝑂(𝑁) KV cache is compulsory, maybe just one piece?

• 𝑂(𝑁) single-step inference is essential for token retrieval

• Cache once with linear-complexity pre-filling!

YOCO
Model Layout

4

• Encoder-Decoder:

• Bidirectional modeling in the encoder part

• Save layer-wise KV cache

• Struggle to implement efficient pre-training

• Decoder-Only:

• Default architecture in modern LLMs

• Heavy KV cache and prefilling cost

• Decoder-Decoder:

• Efficient pre-filling and KV cache from Eec-Dec

• Next Token Prediction from Dec-Only

YOCO
Generation Pipeline

5

• Prefilling:

• Encode all the user query into KV cache for

generation

• O(𝑁2) complexity where 𝑁 is sequence length

• Generation:

• Decode the next token each step with the

previous O(𝐿𝑁) KV cache

• Memory bounded

Language Model

Prefilling Generation

Pre- filling context and then generate

then generate new

YOCO
Architecture

6

• Disentangle prefilling and generation stage

• (Self-)Decoder-(Cross)-Decoder architecture

• RetNet and other linear architectures are still

valuable!

• You Only Cache Once (YOCO) global KV cache

• Shared keys and values with Cross-Attention

• Stacked connection rather than Encoder-

Decoder style

YOCO
Inference Advantage

7

• Prefilling:

• Transformer requires 𝑂 𝐿𝑁2𝐷 computation

to encode KV cache with Self-Attention

• YOCO only needs 𝑂 𝐿𝑁𝐷 computation due

to efficient Self-Decoder

• Context Memory:

• Transformer saves KV cache layer-wisely

with 𝑂 𝐿𝑁𝐷 GPU memory

• YOCO only saves KV cache once where the

memory usage is only 𝑂 𝐿 + 𝑁 𝐷

Cross-Decoder

(Skipped)

Self-Decoder

KV Cache

Cross-Decoder

Prefilling Generation

Pre- filling context and then generate

then generate new

YOCO
Language Modeling Performance

8

• Better than standard Transformer

• Gains come from hybrid architectures of attention

and retention

• Verified with strong open-source Transformer

models including StableLM

YOCO
Long Sequence Modeling

9

• Continue training to 1 million length

• Achieving perfect accuracy on Needle-in-

Haystack experiments

• Comparable with well-known Transformer

models including MiniCPM and ChatGLM

YOCO
Inference Performance

10

• 9.4x memory saving at 512k length

• Prefilling latency: 180s -> 6s

• KV cache is almost negligible

• Make long sequence deployment practical!

Conclusion

11

• Why YOCO will be the default backbone in the future?

• Comparable and better performance in almost every aspects

• Huge efficiency advantages

• Long sequence demand grows

• Code is available at https://aka.ms/YOCO

https://aka.ms/YOCO

Future

12

• Multi-Modality Fusion

• Video is a natural scenario for long sequence modeling

• Real-time video understanding, low-cost generation, embodied agent…

• Sparse Attention Diagram

• Building index for key-value retrieval

• YOCO enables only one index rather than index for each layer

	Slide 1
	Slide 2: Intelligence as Infrastructure
	Slide 3: YOCO Motivation
	Slide 4: YOCO Model Layout
	Slide 5: YOCO Generation Pipeline
	Slide 6: YOCO Architecture
	Slide 7: YOCO Inference Advantage
	Slide 8: YOCO Language Modeling Performance
	Slide 9: YOCO Long Sequence Modeling
	Slide 10: YOCO Inference Performance
	Slide 11: Conclusion
	Slide 12: Future

