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FL in Edge Computing
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Federated Learning (FL) enables participant devices (i.e., clients) to optimize 
their local models while a central server aggregates these local models into a 
global model.
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Federated Learning (FL) enables participant devices (i.e., clients) to optimize 
their local models while a central server aggregates these local models into a 
global model.

ü Lower communication costs

ü Better user privacy
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✗ System heterogeneity: 
Participant clients generally exhibit 
diverse and constrained system 
capabilities. 

Challenges
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✗ System heterogeneity: 
Participant clients generally exhibit 
diverse and constrained system 
capabilities. 

✗ Domain shifts: 
Owing to the distributed nature of 
FL, the data distributions among 
participant clients vary significantly.

Challenges
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Our Contributions

l Pruning with MFP module: Prune local models with personalized 
footprints leveraging both local and global knowledge. Additionally, we 
introduce a heterogeneous aggregation algorithm for aggregating models.
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Our Contributions

l Pruning with MFP module: Prune local models with personalized 
footprints leveraging both local and global knowledge. Additionally, we 
introduce a heterogeneous aggregation algorithm for aggregating models.

l Updating with DAR module: The DAR module encourages clients to learn 
robust representations across various domains, thereby adaptively 
alleviating the domain shifts problem.

l Implementation and evaluation: The results show that DapperFL 
outperforms SOTA in model accuracy, while achieving adaptive model 
volume reductions on heterogeneous clients.
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Overview

Overview of DapperFL with two clients for each communication round.
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Pruning with MFP

Eq.1:

Eq.2:
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Eq.1:

Eq.2:



22

Updating with DAR
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Updating with DAR

Regularization term:
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Updating with DAR

Regularization term:

Cross-entropy loss:
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Updating with DAR

Regularization term:

Cross-entropy loss:

Local objective:
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Model Aggregation
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Model Aggregation

Model recovery:



28

Model Aggregation

Model recovery:

Aggregation:
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Model Accuracy
Comparison of model accuracy on Digits:

Comparison of model accuracy on Office Caltech:
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Model Accuracy
Comparison of model accuracy 
with different ρ:

Comparison of model accuracy on Office Caltech:

Comparison of model accuracy on Digits:
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Ablation Study
Effect of hyper-parameters in the MFP and DAR:
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Ablation Study
Effect of hyper-parameters in the MFP and DAR:

Bayesian search on ϵ:
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Ablation Study
Effect of hyper-parameters in the MFP and DAR:

Bayesian search on ϵ: Effect of key modules:
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Conclusion

l We proposed the MFP module, which utilizes local and global knowledge to 
prune models, and we also proposed to aggregate pruned local models via 
a heterogeneous model aggregation algorithm.

l We proposed the DAR module, which improves the overall performance of 
DapperFL by implicitly encouraging pruned local models to learn robust 
local representations using specialized regularization techniques.

l The evaluation results show that DapperFL outperforms runner-up by up to 
2.28% in terms of accuracy on two domain generalization benchmarks, 
while achieving adaptive model volume reduction ranging from 20% to 80%.
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