

Benchmarking Counterfactual Image Generation

Thomas Melistas^{1,2,3}, Nikos Spyrou^{1,2,3} *, Nefeli Gkouti^{1,2,3}, Pedro Sanchez³, Athanasios Vlontzos^{4,6}, Yannis Panagakis^{1,2}, Giorgos Papanastasiou^{2,5}, Sotirios A. Tsaftaris^{2,3}

¹National & Kapodistrian University of Athens, Greece, ²Archimedes/Athena RC, Greece, ³The University of Edinburgh, UK, ⁴Imperial College London, UK, ⁵The University of Essex, UK, ⁶Spotify Contact: {th.melistas, n.spyrou, nefeli.gkouti}@athenarc.gr

Motivation: Why we need counterfactuals?

Plain image editing can be **insufficient** •

What if...

this person was female

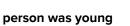
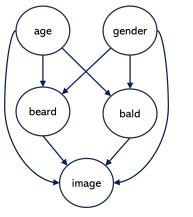


Image Edit

this person was young

Motivation: Why we need counterfactuals?

- What if we assume known **causal** relations of attributes?
- Counterfactuals are **causally** plausible "What if... scenarios"



this person was female

this person was young

Causal Counterfactual

Causal Graph

Motivation: Why is this benchmark important

- **Various** methods for Counterfactual Generation (and more coming..)
- Each method uses its own
 - evaluation metrics
 - datasets
 - causal graphs
 - experimental setup

Deep Structural Causal Models for Tractable Counterfactual Inference. Pawlowski et al. NeurIPS 2020 Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals. Dash et al. WACV 2022 High Fidelity Image Counterfactuals with Probabilistic Causal Models. Ribeiro et al. ICML 2023 Learning to synthesise the ageing brain without longitudinal data Xia et al. Medical Image Analysis 2021

Key Contributions

- We **compare** published methods
 - on synthetic, natural, medical image datasets
 - using different causal graphs
 - on common **metrics**
- We provide a **framework** (and codebase) to bring them together
 - under the **Deep-SCM** paradigm
 - **extendable** to new models, datasets, causal graphs

Structural Causal Models (SCM)

A Structural Causal Model $\mathcal{G} := (\mathbf{S}, P(\boldsymbol{u}))$ consists of:

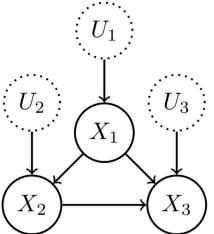
• A collection of structural assignments, called causal mechanisms:

•
$$\mathbf{S} = \{f_i\}_{i=1}^N$$
, s.t. $x_i = f_i(u_i, \mathbf{pa}_i)$

• A joint distribution $P(u) = \prod_{i=1}^{i} p(u_i)$ over mutually independent noise variables

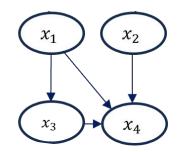
Notation:

- x_i : a random variable (endogenous)
- \mathbf{pa}_i : the parents of x_i (its direct causes)
- u_i : exogenous noise (commonly isotropic Gaussian)



Pearl's Framework:

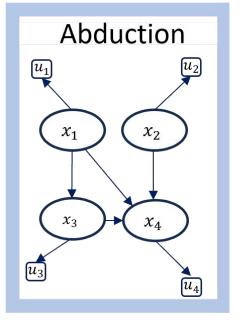
- Abduction
- Action
- Prediction



Pearl's Framework:

- Abduction
- Action
- Prediction

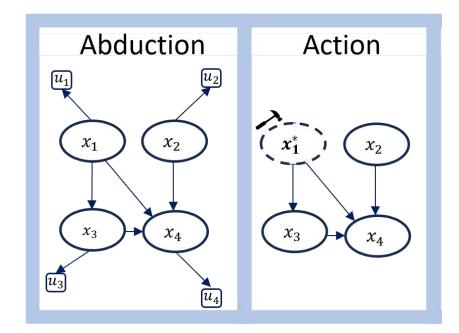
Infer the exogenous noise u_i for each endogenous variable x_i



Pearl's Framework:

- Abduction
- Action
- Prediction

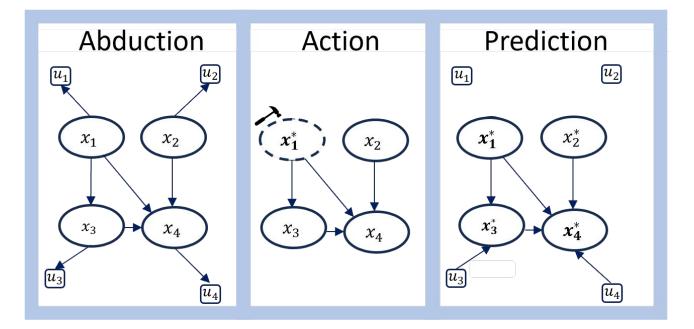
Intervene on a variable $do(x_i^*)$, forcing its value to change



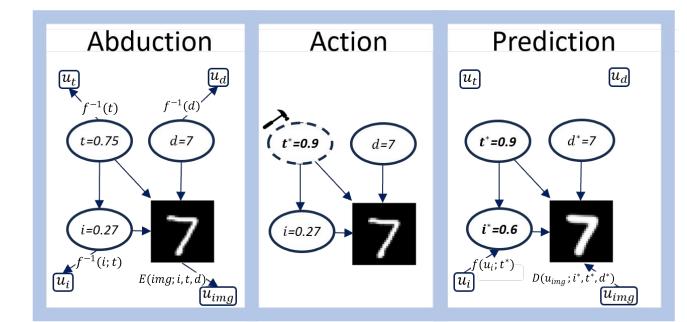
Pearl's Framework:

- Abduction
- Action
- Prediction

Use the modified model to produce the counterfactual



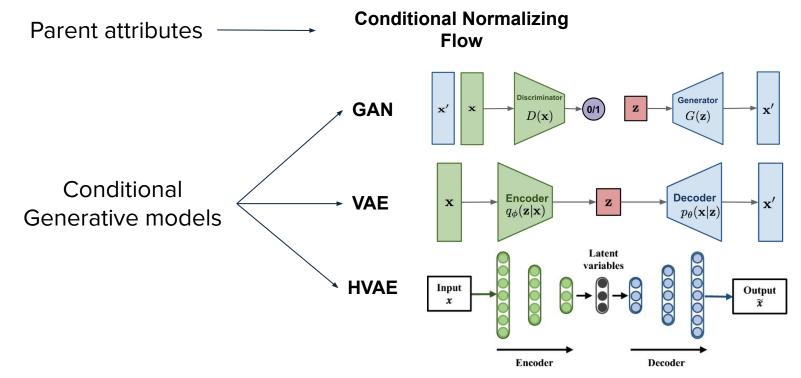
Counterfactual Image Generation



MorphoMNIST

t: thickness i: intensity d: digit

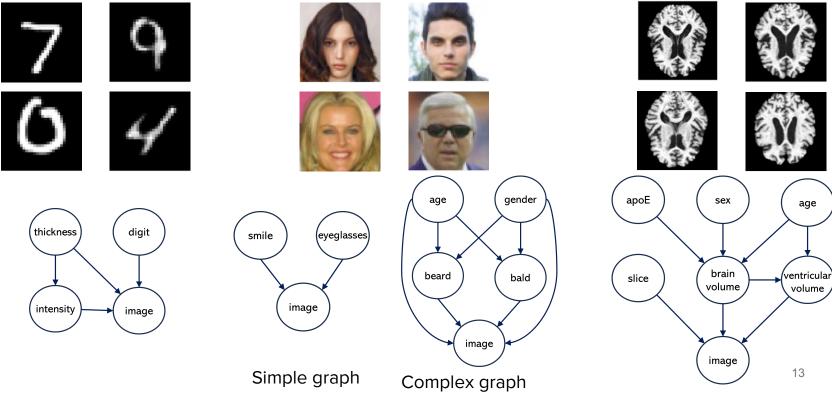
Deep Structural Causal Models (Deep-SCM)



Deep Structural Causal Models for Tractable Counterfactual Inference. Pawlowski et al. NeurIPS 2020

Datasets

MorphoMNIST



CelebA

ADNI

Evaluation of image counterfactuals

- Desired properties of image counterfactuals
 - successful intervention

Factual

do(Smile = True)

Counterfactual

Evaluation of image counterfactuals

- Desired properties of image counterfactuals
 - successful intervention
 - minimal changes (preserve the identity)

Factual

do(Smile = True)

Counterfactual

Evaluation of image counterfactuals

- Desired properties of image counterfactuals
 - successful intervention
 - **minimal** changes (preserves the identity)
- No access to ground truth counterfactuals
- 4 evaluation **metrics**:
 - Composition
 - Effectiveness
 - Realism
 - Minimality

Metrics: Composition

do(null)

Factual

Successful

Unsuccessful

- The image **should not change** when performing a **null-intervention**.
- It measures the ability of the mechanism to **reconstruct** the original image.

Metrics: Effectiveness

Factual

Successful

Unsuccessful

• Determines if the intervention was **successful**.

do(Smile)

• Utilizes classifiers/regressors trained on the data distribution

Metrics: Realism

Factual

Successful

Unsuccessful

- It measures counterfactual image quality by capturing its similarity to the factual.
- To evaluate realism quantitatively, we leverage **FID**.

do(Smile)

Metrics: Minimality

Factual

Successful

Unsuccessful

- Counterfactual leaves non-intervened attributes unaffected
- Counterfactual Latent Divergence (CLD)
 - calculates the "distance" between the counterfactual and factual images in a latent space

Who is the winner?

	Composition	Effectiveness	Realism	Minimality
MorphoMNIST	HVAE	HVAE/VAE	HVAE	VAE
CelebA (simple)	HVAE	HVAE/GAN	HVAE	HVAE
CelebA (complex)	HVAE	HVAE/GAN	GAN	VAE
ADNI	HVAE	HVAE/VAE	HVAE	HVAE

- A **unified framework** for rigorous benchmarking of diverse models, datasets, and causal graphs in **counterfactual image generation**
- An easy-to-use Python package
 <u>https://github.com/gulnazaki/counterfactual-benchmark</u>
- Interested in our work?
 - Visit our page: https://gulnazaki.github.io/counterfactual-benchmark

Engineering and Physical Sciences Research Council

Greece 2.0