Benchmarking Estimators for Natural Experiments: A Novel Dataset and Doubly Robust Algorithm

R. Teal Witter New York University

Christopher Musco New York University

Treatment Effect Estimation

There are *n* observations, each with covariates $x_i \in \mathbb{R}^d$ for $i \in [n]$.

Observation *i* receives the "treatment" with **propensity** $p_i \in (0,1)$ and the "control" otherwise.

We then receive either the **treatment outcome** $y_i^{(1)}$ or the **control outcome** $y_i^{(0)}$, but not both.

Our goal is to estimate the **average treatment effect**:

$$\tau = \frac{1}{n} \sum_{i \in [n]} y_i^{(1)} - y_i^{(0)}$$

A Novel Treatment Effect Dataset

Reach Out and Read Colorado (RORCO) is an early childhood literacy nonprofit that gives free books to children at pediatric check-ups.

Dataset	Size	Variables	Treated %	BCE	$\mathbf{Corr}(\mathbf{y}^{(1)},\mathbf{p})$	$\mathbf{Corr}(\mathbf{y}^{(0)},\mathbf{p})$
JOBS	722	8	41.1	0.0856	0.0355	0.0541
TWINS	50820	40	49.4	0.499	-0.00311	-0.0036
IHDP	747	26	18.6	0.452	0.0967	0.0236
NEWS	5000	3	45.8	0.545	0.86	-0.565
ACIC 2016	4802	54	18.4	0.372	0.112	0.0383
ACIC 2017	4302	50	47.4	0.436	-0.269	-0.153
RORCO Real	4178	78	25.3	0.158	-0.000602	-0.0739
RORCO	21663	78	44.3	0.212	-0.986	-0.989

Challenging Confoundedness

RORCO prioritizes under-served children to maximize positive impact but this causes:

a) Confounding between outcome and propensity and

b) Confounding between treatment effect and propensity.

Benchmarking Treatment Effect Estimators

Method	Mean	1st Quartile	2nd Quartile	3rd Quartile	Time (s)
Regression Discontinuity	4.65e-03	2.72e-03	3.84e-03	5.52e-03	9.55e-04
Propensity Stratification	2.57e-03	1.52e-03	2.25e-03	3.29e-03	2.78e-03
Direct Difference	4.48e-01	3.57e-01	4.18e-01	5.79e-01	4.74e-04
Adjusted Direct	6.29e-03	5.25e-03	6.20e-03	7.14e-03	1.15e+01
Horvitz-Thompson	1.06e-02	4.29e-03	9.20e-03	1.44e-02	4.65e-04
TMLE	1.19e-01	7.21e-03	2.60e-02	7.43e-02	2.35e+01
Off-policy	3.17e-03	1.86e-03	2.86e-03	4.11e-03	1.14e+01
Double-Double	1.07e-05	1.06e-06	4.41e-06	1.45e-05	2.29e+01
Doubly Robust	9.98e-07	1.48e-07	5.42e-07	1.37e-06	9.89e+00
Direct Prediction	1.36e-02	3.60e-03	1.02e-02	1.94e-02	1.23e+01
SNet	2.57e-02	4.85e-03	1.21e-02	3.62e-02	3.49e+01
FlexTENet	1.15e-03	4.28e-05	1.09e-04	4.95e-04	1.56e+02
OffsetNet	1.10e-03	7.72e-04	9.90e-04	1.41e-03	1.30e+02
TNet	8.05e-04	6.39e-05	2.50e-04	4.37e-04	1.06e+02
TARNet	1.92e-04	2.70e-05	1.04e-04	2.38e-04	1.01e+02
DragonNet	2.18e-02	4.42e-03	1.71e-02	2.46e-02	6.88e+00
SNet3	1.80e-02	3.48e-03	9.80e-03	2.50e-02	2.36e+01
DRNet	5.00e-03	1.53e-04	6.01e-04	2.25e-03	1.14e+02
RANet	7.85e-04	3.67e-05	2.08e-04	7.06e-04	1.91e+02
PWNet	2.28e-01	7.02e-03	4.00e-02	2.82e-01	1.13e+02
RNet	2.96e-03	2.47e-03	2.84e-03	3.43e-03	5.83e+01
XNet	1.00e-03	3.08e-05	2.29e-04	9.26e-04	2.41e+02

Doubly Robust Estimators

We learn functions $f^{(1)}$, $f^{(0)}$: $\mathbb{R}^d \to \mathbb{R}$ to predict the treatment and control outcomes.

$$\hat{\tau}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i^{(1)} - f^{(1)}(\mathbf{x}_i)}{p_i} \mathbb{1}_{z_i=1} - \frac{y_i^{(0)} - f^{(0)}(\mathbf{x}_i)}{1 - p_i} \mathbb{1}_{z_i \neq 1} + f^{(1)}(\mathbf{x}_i) - f^{(0)}(\mathbf{x}_i) \right)$$

Doubly robust estimators are **asymptotically** correct if either:

- a) The propensity scores are accurate (and the functions' error is independent)
- b) The functions are accurate (and the propensity scores' error is independent).

Non-Asymptotic Setting

Why are doubly robust estimators so accurate in the finite setting?

We exactly analyze doubly robust estimators that learn functions $f^{(1)}, f^{(0)}: \mathbb{R}^d \to \mathbb{R}$ separately from the data they are applied to. For these estimators, the variance is

$$\begin{aligned} \operatorname{Var}[\hat{\tau}(\mathbf{z}) - \tau] &= \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}_{\mathbf{z},S_1,S_2} \left[\left((y_i^{(1)} - \hat{f}_{\mathbf{z},S(i)}^{(1)}(\mathbf{x}_i)) \sqrt{\frac{1 - p_i}{p_i}} + (y_i^{(0)} - \hat{f}_{\mathbf{z},S(i)}^{(0)}(\mathbf{x}_i)) \sqrt{\frac{p_i}{1 - p_i}} \right)^2 \right] \\ &+ \frac{1}{n^2} \sum_{i \neq j} \mathbb{E}_{\mathbf{z},S_1,S_2} \left[\left(\hat{y}_i(\mathbf{z}^{(j \to 1)}) - \hat{y}_i(\mathbf{z}^{(j \to 0)}) \right) \left(\hat{y}_j(\mathbf{z}^{(i \to 1)}) - \hat{y}_j(\mathbf{z}^{(i \to 0)}) \right) \right]. \end{aligned}$$

Non-Asymptotic Setting

Why are doubly robust estimators so accurate in the finite setting?

We exactly analyze doubly robust estimators that learn functions $f^{(1)}, f^{(0)}: \mathbb{R}^d \to \mathbb{R}$ separately from the data they are applied to. For these estimators, the variance is

$$\operatorname{Var}[\hat{\tau}(\mathbf{z}) - \tau] \approx \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}, S_1, S_2} \left[\left((y_i^{(1)} - \hat{f}_{\mathbf{z}, S(i)}^{(1)}(\mathbf{x}_i)) \sqrt{\frac{1 - p_i}{p_i}} + (y_i^{(0)} - \hat{f}_{\mathbf{z}, S(i)}^{(0)}(\mathbf{x}_i)) \sqrt{\frac{p_i}{1 - p_i}} \right)^2 \right]$$

Non-Asymptotic Setting

Why are doubly robust estimators so accurate in the finite setting?

We exactly analyze doubly robust estimators that learn functions $f^{(1)}, f^{(0)}: \mathbb{R}^d \to \mathbb{R}$ separately from the data they are applied to. For these estimators, the variance is

$$\operatorname{Var}[\hat{\tau}(\mathbf{z}) - \tau] \approx \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}, S_1, S_2} \left[\left((y_i^{(1)} - \hat{f}_{\mathbf{z}, S(i)}^{(1)}(\mathbf{x}_i)) \sqrt{\frac{1 - p_i}{p_i}} + (y_i^{(0)} - \hat{f}_{\mathbf{z}, S(i)}^{(0)}(\mathbf{x}_i)) \sqrt{\frac{p_i}{1 - p_i}} \right)^2 \right]$$

What if we learn the functions to minimize this error? \Rightarrow The Double-Double Algorithm

Double-Double Algorithm

Method	Mean	1st Quartile	2nd Quartile	3rd Quartile	Time (s)
Doubly Robust DR + Weighting DR + 2x Weighting	9.98e-07 4.02e-06 3.80e-06	1.48e-07 5.46e-07 2.48e-07	5.42e-07 2.62e-06 9.71e-07	1.37e-06 5.57e-06 3.82e-06	9.89e+00 9.81e+00 9.80e+00
DR + Split DR + Split + Weight Double-Double	9.82e-05 1.12e-04 1.07e-05	3.27e-06 2.19e-06 1.06e-06	1.21e-05 1.03e-05 4.41e-06	3.65e-05 2.41e-05 1.45e-05	2.22e+01 2.22e+01 2.29e+01

Doubly robust estimators without the training split perform better but they effectively use twice as much data as doubly robust estimators with the training split

Natural Experiments Package

import naturalexperiments as ne

X, y, z = ne.dataloaders['RORCO']() # Load datasets

estimator = ne.methods['Double-Double'] # Load estimator

p = ne.estimate_propensity(X, z) # Estimate propensity

estimated_effect = estimator(X, y, z, p, ne.train)

Thank you!

Codebase: github.com/rtealwitter/naturalexperiments

arXiv: arxiv.org/abs/2409.04500

Email: rtealwitter@gmail.com