Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge

NeurIPS 2024 Poster

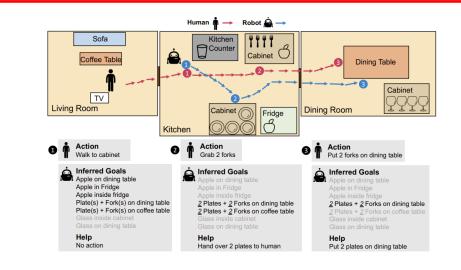
https://vis-www.cs.umass.edu/CHAIC/

Weihua Du^{*} · Qiushi Lyu^{*} · Jiaming Shan · Zhenting Qi · Hongxin Zhang · Sunli Chen Andi Peng · Tianmin Shu · Kwonjoon Lee · Behzad Dariush · Chuang Gan

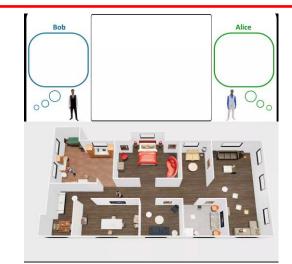
* Equal Contribution

Humans can help others with constraints

• Humans can figure out who needs help without communication, e.g.:


•

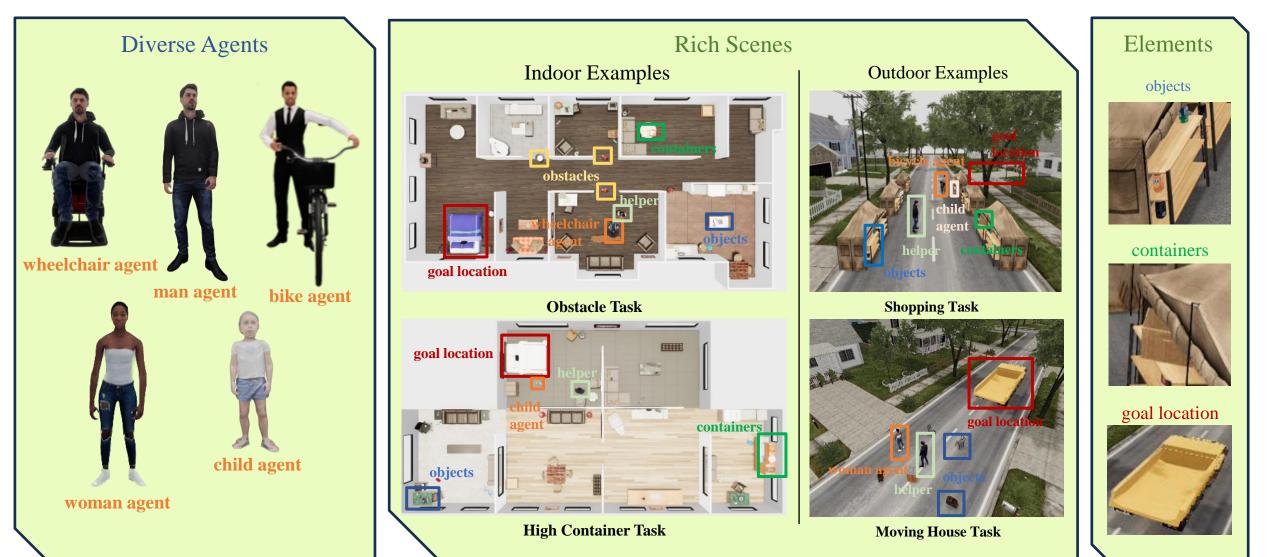
- Finding out people in need is an essential commonsense, while AI is hard to do it.
 - Most AI agents need clear instruction about what to do next, while real life lacks such instruction.


Existing benchmarks neglect social intelligence

Challenge Name	Accessibility Setting	Multi-Agent Support	Goal Inference	Observation Type	Outdoor Scenes	Emergent Event
Watch-and-Help (Puig et al., 2021)	×	\checkmark	×	Symbolic	×	×
NOPA (Puig et al., 2023a)	×	\checkmark	\checkmark	Symbolic	×	×
Social Rearrangement (Szot et al., 2023)	×	\checkmark	×	Visual*	×	×
TDW-MAT (Zhang et al., 2023)	×	\checkmark	×	Visual	×	×
Hazard (Zhou et al., 2024)	×	×	×	Visual	\checkmark	×
Smart Help (Cao et al., 2024)	\checkmark	\checkmark	\checkmark	Symbolic**	×	×
CHAIC (Ours)	\checkmark	\checkmark	\checkmark	Visual	\checkmark	\checkmark

NOPA [1]

e.g.


TDW-MAT [2]

[1] Puig, Xavier, et al. "NOPA: Neurally-guided Online Probabilistic Assistance for Building Socially Intelligent Home Assistants"
[2] Zhang, Hongxin, et al. "Building Cooperative Embodied Agents Modularly with Large Language Models." 3

Constrained Human-AI Collaboration Challenge (CHAIC)

Constrained Human-AI Cooperation Challenge with Diverse Agents and Rich Scenes and Elements

Constrained Human-AI Collaboration Challenge

- CHAIC features various constraints for agents:
- Common constraint:
 - Height constraint: an action is more likely to fail when the objects is higher / lower;
 - Weight constraint: an action is more likely to fail when the objects is heavier;
- The probabilities vary between different types of agents:
 - For example:
 - Little girl: struggle to reach objects in high places;
 - Man in wheelchair: struggle to reach low places, cannot go through narrow places.

Indoor Scene

- Various scenes: both indoor and outdoor
- Indoor:

high goal place task

high target task

low target task

Outdoor Scene (shopping)

The agent is riding a bike and he needs to buy something from the store and carry them to home.

Outdoor Scene (shopping)

Each store sells a unique category of items.

And there may be a box inside some of the stores.

Agent can use the box as a container to collect more things.

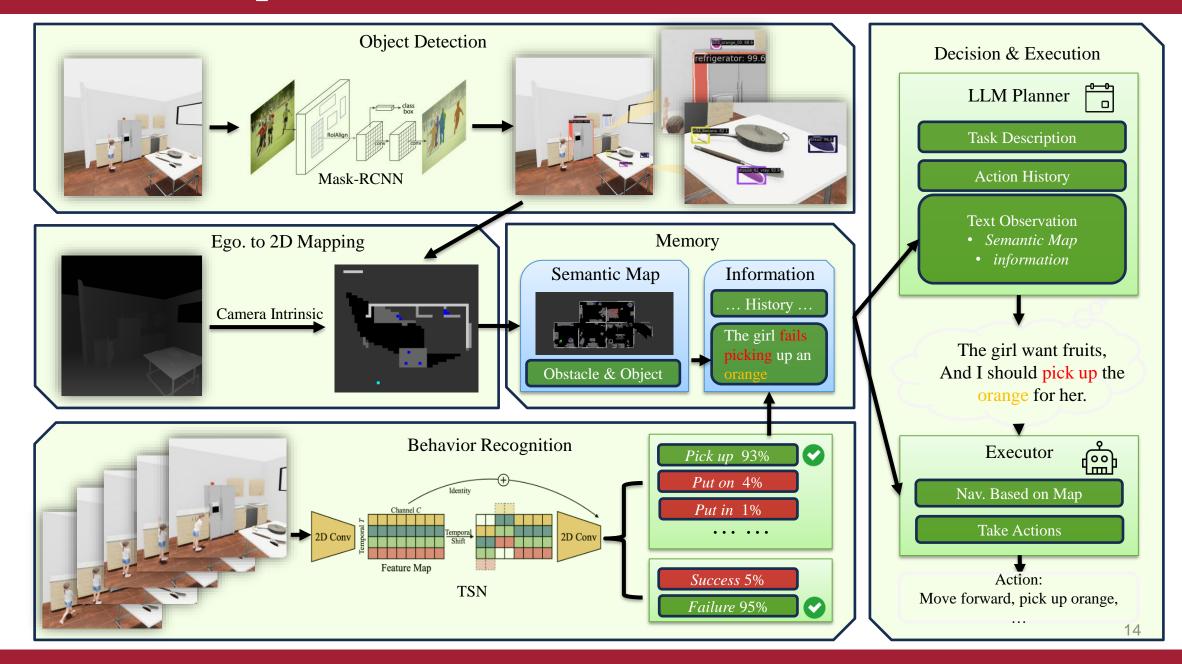
Outdoor Scene (furniture)

The agent needs to carry the furniture to the truck.

Some of the furniture is so heavy that the constrained agent could only lift them with a small chance.

The agents can carry one piece of heavy furniture together if it can't be carried by only one person.

Baselines


· Planning-Based

- Random
- Rule-Based Planner
- End-to-End VLM
- LLM + behavior modeling (BM) \bigstar
- Learning-Based
 - Reinforcement Learning
 - Smart Help [3]
- Oracle

•

• The helper knows everything, as a comparison

LLM + BM Helper Baseline

Indoor											
Helper Agent	No Constraint		High Target		High Container		High Goalplace				
	TR(EI)↑	IA↑	TR(EI)↑	IA↑	TR(EI)↑	IA↑	TR(EI)↑	ĪA↑			
w/o	0.53	/	0.30	/	0.37	/	0.28	/			
Random	0.52(-0.02)	0.24	0.27(-0.05)	0.29	0.36(0.00)	0.25	0.33(0.10)	0.14			
RHP	0.64(0.15)	0.15	0.35(0.11)	0.29	0.45(0.19)	0.21	0.35(0.18)	0.21			
VLM (GPT-40)	0.63(0.14)	0.24	0.33(0.06)	0.32	0.43(0.12)	0.40	0.26(-0.20)	0.33			
LLM (GPT-4) + BM	0.65(0.17)	0.25	0.38(0.19)	0.29	0.49(0.24)	0.30	0.36(0.23)	0.35			
Oracle	0.77(0.31)	0.88	0.49(0.37)	0.91	0.69(0.47)	0.91	0.61(0.56)	0.90			
Indoor					Outdoor						
Helper Agent	Low Target		Obstacle		Shopping			Furniture			
	TR(EI)↑	IA↑	TR(EI)↑	IA↑	TR(EI)↑	IA↑	ER↓	TR(EI)↑			
w/o	0.51	/	0.07	/	0.37	/	/	0.17			
Random	0.50(-0.01)	0.31	0.21(0.56)	0.24	0.39(0.05)	0.34	0.32	0.48(0.68)			
RHP	0.66(0.23)	0.28	0.44 (0.77)	0.17	0.49(0.22)	0.44	0.30	0.65(0.72)			
VLM (GPT-40)	0.69(0.26)	0.46	0.40(0.86)	0.35	0.50(0.25)	0.72	0.39	0.70(0.78)			
LLM (GPT-4) + BM	0.70(0.27)	0.43	0.42(0.89)	0.47	0.58(0.33)	0.74	0.38	0.69(0.77)			
Oracle	0.82(0.38)	0.91	0.60(0.87)	0.82	0.61(0.39)	0.87	0.17	0.76(0.80)			

- Transport Rate (TR), Efficiency Improvement (EI), and Goal Inference Accuracy (IA)
- LLM+BM Helper emerges as a strong baseline.
- Compared with Oracle, all the methods have improvement space (especially IA).