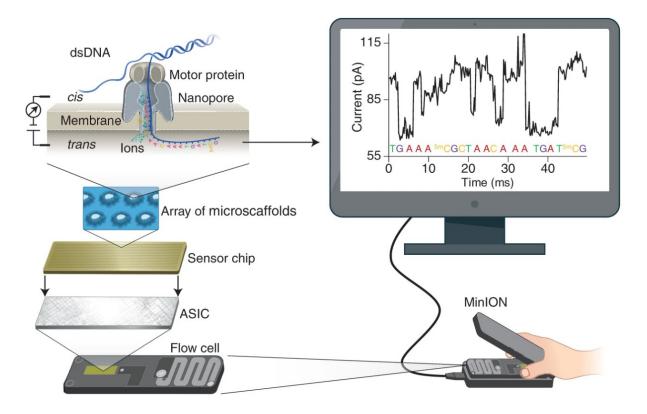


A Multi-task Benchmark Dataset for Nanopore Sequencing

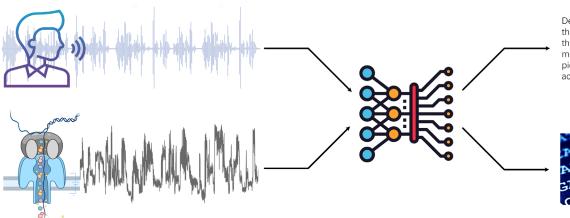
Guangzhao Cheng¹, Chengbo Fu¹, Lu Cheng^{1,2}

¹ Department of Computer Science, Aalto University, Finland ² Institute of Biomedicine, University of Eastern Finland, Finland


Contents

- Background
- Motivation
- NanoBaseLib: Dataset
- NanoBaseLib: Benchmark
 - Base Calling (BC)
 - PolyA Detection (PD)
 - Segmentation and event Alignment (SA)
 - Modification Detection (MD)
- Summary

Background: Nanopore Sequencing


• Nanopore sequencing is the third-generation sequencing technology.

Background: Nanopore Sequencing

• Base Calling (BC) is the **seq2seq** model similar with Automatic Speech Recognition (ASR).

Deep learning is a method in artificial intelligence that teaches computers to process data in a way that is inspired by the human brain. Deep learning models can recognize complex patterns in pictures, text, sounds, and other data to produce accurate insights and predictions.

Automatic Speech Recognition (ASR)

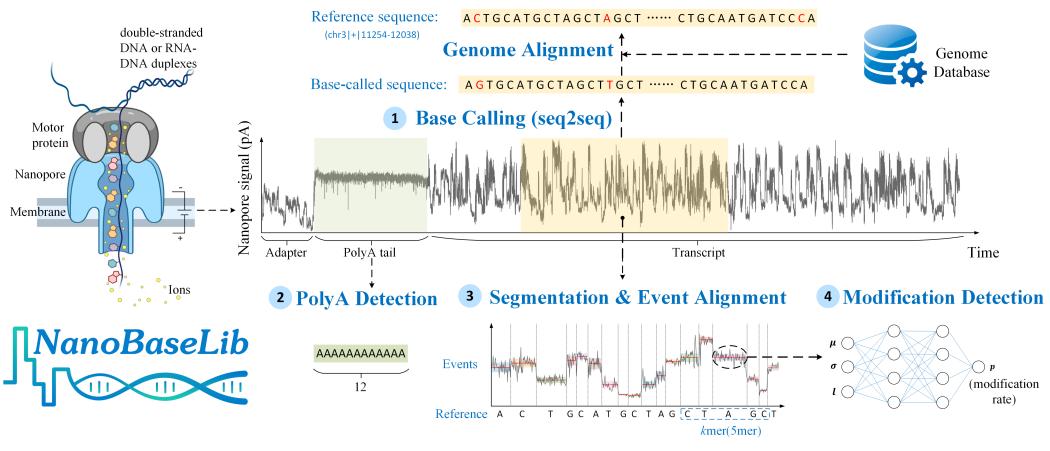
Base Calling (BC)

Motivation

Dataset

- Performance improvement needs larger dataset
- Dataset are scattered in different repositories
- ONT has released various versions of the pores ($R6 \sim R10.4$)

Analysis


- Different bioinformatic preprocessing workflows
- Undermines the benchmarking fairness

Ground truth

• Various tasks requires lots of domain knowledge

NanoBaseLib: One Dataset, Multiple Tasks

NanoBaseLib: Dataset

• https://nanobaselib.github.io/dataset.html

	Raw Data				Ta	ask	
Dataset	Size (GB)	Species	Type	\mathbf{BC}^1	$\mathbf{P}\mathbf{D}^2$	$\mathbf{S}\mathbf{A}^3$	\mathbf{MD}^4
ont_polya_standard	81	Synthetic	RNA	1	1	√	X
eGFP_polyA_DNA	43	Synthetic	cDNA	✓	1	✓	X
eGFP_polyA_RNA	529	Synthetic	RNA	1	1	✓	X
lambda_phage	19	Lambda phage	DNA	1	X	✓	X
NA12878	68	Homo sapiens	DNA	1	X	✓	X
curlcake	584	Synthetic	RNA	✓	X	✓	✓
scBY4741_m5C	37	Synthetic	RNA	✓	X	✓	✓
scBY4741_hm5C	17	Synthetic	RNA	1	X	✓	✓
scBY4741_pU	4	Synthetic	RNA	1	X	1	✓
hct116	346	Homo sapiens	RNA	/	X	1	✓
hek293t_wt	224	Homo sapiens	RNA	✓	X	✓	✓
hek293t_ko	356	Homo sapiens	RNA	1	X	✓	X
mESCs_eligos	220	Mus musculus	RNA	/	X	1	✓
ecoli_eligos	214	Escherichia coli	RNA	1	X	1	✓
dinopore_ivt	15	Synthetic	RNA	/	X	1	✓
dinopore_xenopus	399	Xenopus lavies	RNA	✓	X	✓	✓

¹ Base calling, ² PolyA detection, ³ Segmentation and event alignment, ⁴ Modification detection.

(Modifications: m6A, m5C, hm5C, inosine, pseudouridine)

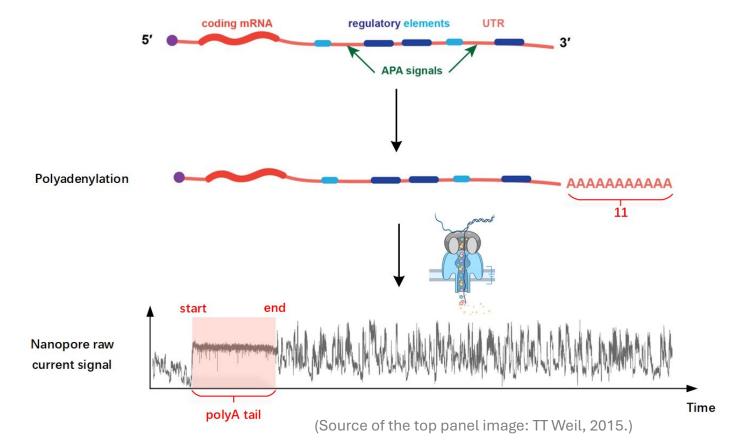
Benchmark: Base Calling (BC)

- Input: raw current signal sequence
- Output: DNA/RNA base sequence

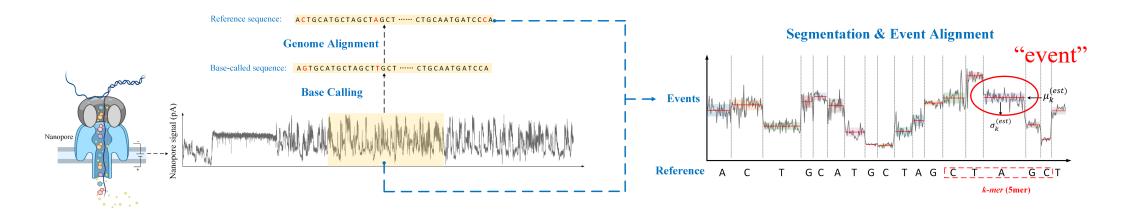
Software	Deve	Developer		ре	Architecture		
	ONT Th	nird-party	DNA	RNA	Convolution	Encoder	Decoder
Causalcall	X	✓	✓	X	Causal Dilated CNN		CTC
Rodan	X	✓	X	✓	CNN		CTC
Bonito	✓	X	✓	✓	CNN	LSTM	CTC - CRF
Dorado	✓	X	✓	✓	CNN	→ Bi-LSTM	CTC - CRF

Table 2: DNA	hase calling	performances on	test datase	t NA 12878
Table 2. Div	base carring	periorinances on	i test datase	117/12070.

Ferreimanees on test dataset and an activities of the second of the seco								
Model	$\frac{M}{Align} \uparrow$	$\frac{I}{Align} \downarrow$	$\frac{X}{Align} \downarrow$	$\frac{D}{Align} \downarrow$	$\frac{M}{Ref} \uparrow$	$\frac{I}{Ref} \downarrow$	$\frac{X}{Ref} \downarrow$	$\frac{D}{Ref}\downarrow$
Causalcall	84.30	0.82	4.11	10.77	84.41	0.82	4.12	10.79
Guppy(v2.3.1)	86.63	2.59	4.34	6.44	88.08	2.64	4.36	6.53
Guppy(v4.5.4)	91.93	1.97	2.68	3.42	93.27	2.01	2.71	3.48
Guppy(v6.0.1)	93.60	1.51	2.12	2.77	94.30	1.54	2.14	2.79
Bonito(v0.7.3)	93.35	1.56	2.23	2.86	94.13	1.59	2.25	2.90
Dorado(v0.5.3)	93.35	1.57	2.24	2.85	93.07	1.57	2.23	2.84
Dorado(v0.7.0)	93.47	1.54	2.18	2.81	93.17	1.55	2.17	2.80


Table 3: RNA base calling performances on test dataset hek293t_wt.

	6							
Model	$\frac{M}{Align} \uparrow$	$\frac{I}{Align} \downarrow$	$\frac{X}{Align} \downarrow$	$\frac{D}{Align} \downarrow$	$\frac{M}{Ref} \uparrow$	$\frac{I}{Ref}$ \downarrow	$\frac{X}{Ref} \downarrow$	$\frac{D}{Ref}\downarrow$
Rodan	87.72	3.28	4.91	4.08	85.16	3.05	4.17	3.78
Guppy(v2.3.1)	85.67	3.59	4.46	6.29	88.06	3.74	4.54	6.43
Guppy(v4.5.4)	91.78	2.39	2.15	3.67	93.40	2.48	2.19	3.74
Guppy(v6.0.1)	91.78	2.39	2.15	3.67	93.40	2.48	2.19	3.74
Dorado(v0.5.3)	93.96	1.89	1.81	2.34	95.22	1.96	1.84	2.37
Dorado(v0.7.0)	93.74	1.95	1.92	2.40	95.01	2.02	1.94	2.43

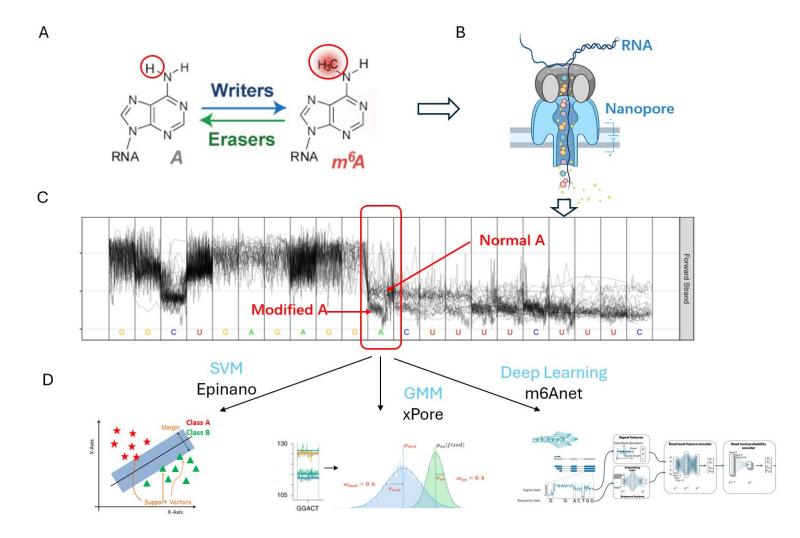

Benchmark: PolyA Detection (PD)

• Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA).

Benchmark: Segmentation and event Alignment (SA)

• Evaluation metrics:

$$\hat{\sigma} = \frac{1}{N} \sum_{n=1}^{N} \left\{ \frac{1}{K_n} \sum_{k=1}^{K_n} \sigma_{s_{n,k}}^{(est)} \right\}$$


$$\hat{L} = \frac{1}{N} \sum_{n=1}^{N} \left\{ \frac{1}{K_n} \sum_{k=1}^{K_n} \log \mathcal{N} \left(\mu_{s_{n,k}}^{(est)} | \mu_{s_{n,k}}^{(ref)}, \sigma_{s_{n,k}}^{(ref)} \right) \right\}$$

"standard" kmer parameter table from ONT¹

1	kmer	level_mean	level_stdv
2	AAAAA	108.901413	2.676522
3	AAAAC	105.724444	2.676522
4	AAAAG	106.417182	2.676522
5	AAAAT	104.532801	2.676522
6	AAACA	82.446931	3.018476
7	AAACC	87.188010	3.018476
8	AAACG	84.463941	3.018476
9	AAACT	87.611027	3.018476
10	AAAGA	128.133534	5.559623

Benchmark: Modification Detection (MD)

Summary

• One Dataset → Multiple Tasks

- ✓ NanoBaseLib is a comprehensive dataset integrating 16 public datasets with over 30 million reads.
- ✓ NanoBaseLib is a benchmark platform covering 4 critical tasks.
- ✓ NanoBaseLib is a software package designed to incorporate new datasets efficiently.

