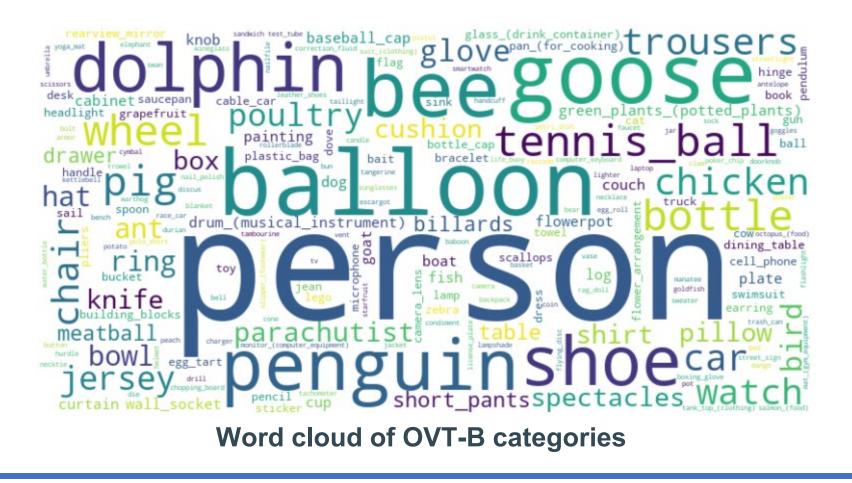
OVT-B: A New Large-Scale Benchmark for Open-Vocabulary Multi-Object Tracking


Introduction

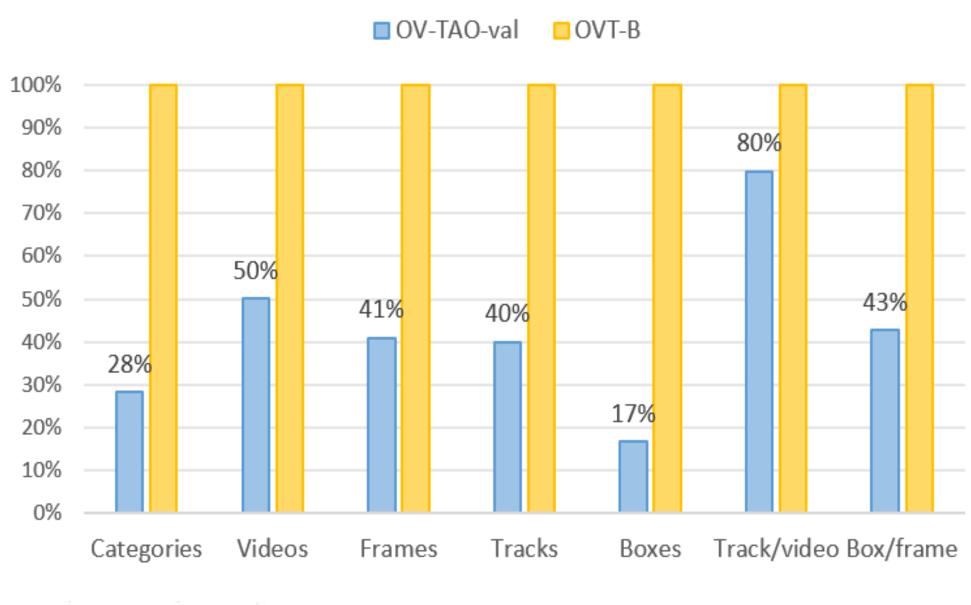
Open-vocabulary object perception has become an important topic in AI, which aims to identify objects with novel classes that have not been seen during training. Under this setting, openvocabulary object detection (OVD) in a single image has been studied in many literature. However, the **open-vocabulary object** tracking (OVT) from a video is less studied, and a reason is the shortage of benchmarks. In this work, we build OVT-B, a largescale Open-Vocabulary multi-object Tracking Benchmark. OVT-B contains 1,048 categories of objects and 1,973 videos with 637,608 bounding box annotations, which is much larger than the sole open-vocabulary tracking dataset, *i.e.*, OV-TAO-val dataset (200+ categories, 900+ videos). The proposed OVT-B can be used as a new benchmark to pave the way for the research of **OVT**. We also develop a simple yet effective baseline method OVTrack+, which integrates the motion features for OVT task.

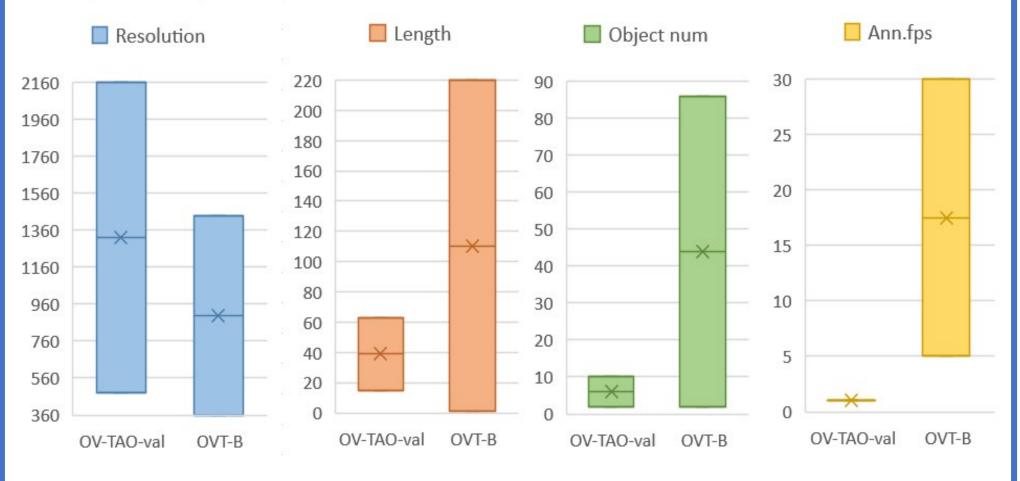
OVT Benchmark

Comparison with MOT datasets

OVT-B dataset comprises 1,048 categories (534 base and 514 novel). In comparison to existing MOT datasets, such as MOT17, KITTI, and UAVDT-MOT, OVT-B offers a significantly larger variety of categories, surpassing even the TAO dataset with 833 categories. OVT-B offers a larger number of annotated frames, trajectories, bounding boxes, and videos, making it a dataset of significantly greater scale.

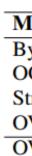
Haiji Liang¹, Ruize Han^{2,3*}


School of Software Technology, Zhejiang University


² Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences ³ Department of Computer Science, City University of Hong Kong

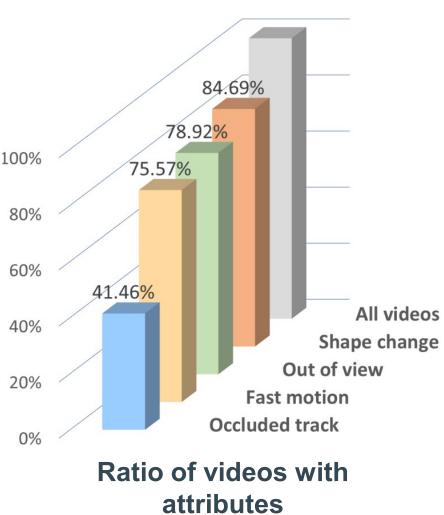
Statistics of MOT datasets and OVMOT datasets

Datasets	#Cls.	#Vid.	#Track	#Box	#Frm.	Res.	Dur.	#Obj.	Ann.
MOT17	1	42	3993	901K	33K	480-1080	17-85	1-63	30
MOT20	1	8	3833	2102K	13K	880-1080	17-133	1-94	30
KITTI	5	50	2600	80K	15K	512	20-90	0-30	10
DanceTrack	1	100	990	877K	105K	720-1080	20-108	1-22	20
UAVDT	3	100	2700	841K	80K	540-1080	3-99	1-122	6
TAO	833	2907	17287	333K	2674K	480-2160	1-279	1-10	1
GMOT-40	10	40	2026	256K	9K	480-1080	3-24.2	10-128	24-30
OV-TAO-val	330	988	5473	113K	36K	480-2160	15-63	1-11	1
OV-TAO-test	357	1419	7946	166K	52K	480-2160	10-59	1-11	1
OVT-B (Ours)	1048	1973	13686	673K	88K	360-1440	1-220	2-86	5-30



Comparison with OV-TAO-val: As a rigorously developed benchmark, OVT-B significantly surpasses the OV-TAO-val dataset, offering dense targets, comprehensive annotations, and a diverse range of videos.

20%



____ Μ By 00 St 0 0

Dataset Attributes

OVT-B presents various challenges for tracking, including objects moving out of view, rapid motion, shape changes, and varying levels of occlusion. Besides, OVT-B contains a proportion of large objects, objects All videos with complex shapes, and those with short trajectories. These attributes highlight the diversity of targets and trajectories present in OVT-B.

Screenshots of annotations of OVT-B

OVTrack+: A New Baseline

To tackle the challenge of open-vocabulary multi-object tracking, we propose OVTrack+ integrating the motion model for the object association task in OVT, thanks to its category-agnostic nature.

		A	1		Base				Novel			
Method	TETA	LocA	AssA	ClsA	TETA	LocA	AssA	ClsA	TETA	LocA	AssA	ClsA
ByteTrack [58]	20.1	36.1	12.4	11.9	20.6	35.6	12.7	13.4	19.6	36.6	12.0	10.3
DC-SORT [59]	16.0	31.2	4.3	12.3	16.5	31.0	4.4	14.3	15.4	31.4	4.3	10.3
StrongSORT [14]	24.8	31.6	30.7	12.2	25.7	31.4	31.6	14.2	23.9	31.8	29.7	10.3
OVTrack [5]	46.1	60.8	66.1	11.5	46.8	60.5	66.7	13.4	45.5	61.1	65.5	9.6
OVTrack+	47.0	62.0	67. 7	11.3	47.6	61.6	68.2	13.2	46.4	62.5	67.3	9.4

Open-vocabulary MOT comparison results on OVT-B

		A	11		Base				Novel			
lethod	TETA	LocA	AssA	ClsA	TETA	LocA	AssA	ClsA	TETA	LocA	AssA	ClsA
yteTrack [58]	20.1	36.9	6.0	17.6	20.9	37.0	5.9	19.7	14.7	36.0	6.1	1.8
C-SORT [59]	24.3	52.1	6.0	14.8	25.1	52.7	6.1	16.5	18.5	48.1	5.4	2.1
trongSORT [14]	23.4	41.6	13.5	15.2	24.4	42.3	13.7	17.0	16.6	36.4	11.6	1.7
WTrack [5]	36.1	53.8	37.3	17.3	37.1	54.2	37.8	19.4	28.8	51.2	33.7	1.5
WTrack+	38.4	57.5	40.8	16.9	39.2	57.5	41.0	18.9	32.5	57.0	38.7	1.8

Open-vocabulary MOT comparison results on OV-TAO-val