# StreamBench: Towards Benchmarking Continuous Improvement of Language Agents

NeurIPS 2024 Track on Datasets and Benchmarks

Cheng-Kuang Wu<sup>1\*</sup>, Zhi Rui Tam<sup>1\*</sup>, Chieh-Yen Lin<sup>1</sup>, Yun-Nung Chen<sup>2</sup>, Hung-yi Lee<sup>2</sup>

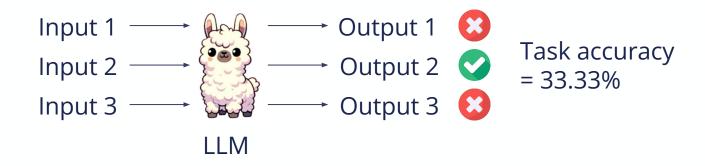


<sup>1</sup>Appier Al Research <sup>2</sup>National Taiwan University Paper



# Background

 Most benchmarks measure LLMs' *innate capabilities* (out-of-the-box performance) on a **batch** of task instances

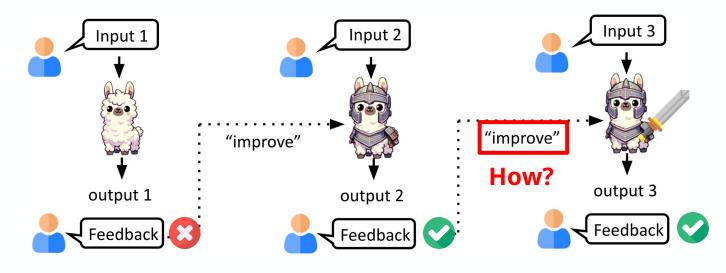


• They do NOT measure LLMs' *ability to improve* over time when exposed to *a sequence* of task instances



# **Benchmark Setting: Input-Feedback Sequence**

- An online streaming setting, which exposes the LLM to an **input-feedback sequence**
- Input: a natural language instruction / question
- Feedback: correctness 😢 🔗





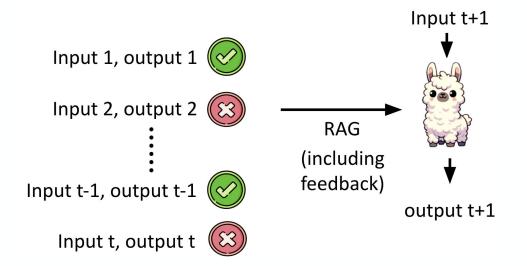
## How to "Improve" the LLMs?

- To enhance LLMs' capabilities over time, we can design an LLM "agent": an LLM parameterized by *θ* and augmented with additional components
  - Prompts
  - RAG memory
  - RAG retriever
  - Other creative components

• Design **update algorithm** to improve these components

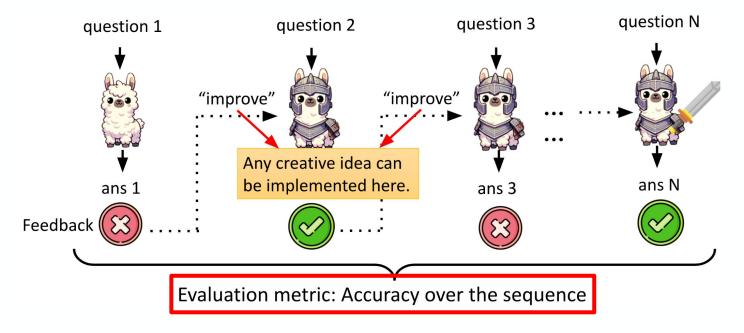
### **Example: A RAG-Based Simple Baseline**

- Idea: store past experience in RAG memory M
  - At each time step i, store (input, output, feedback) in *M*
- **Retrieve them in the future** for in-context learning



# **Goal: Design Methods to Improve Agents!**

Update <u>parameters</u>, <u>RAG memory</u>, <u>RAG retriever</u>, <u>prompts</u>,
... or **other creative components** you can come up with!



### **Tasks and Datasets**

- We choose a variety of tasks and datasets
- For each dataset, **we randomly assign a time step to each data instance** to build the streaming sequence

| Task                                      | Text-to-SQL                                         |       |       | Python                     | Tool Use                            | Medical                           | QA                                |  |
|-------------------------------------------|-----------------------------------------------------|-------|-------|----------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--|
| Dataset                                   | Spider                                              | CoSQL | BIRD  | <b>DS-1000</b>             | ToolBench                           | DDXPlus                           | HotpotQA                          |  |
| Input $(x_t)$<br>Output $(y_t)$<br>Metric | Data requirements<br>SQL code<br>Execution accuracy |       |       | Question<br>Code<br>Pass@1 | User query<br>API calls<br>Accuracy | Symptoms<br>Diagnosis<br>Accuracy | Question<br>Answer<br>Exact Match |  |
| Test size $(T)$                           | 2,147                                               | 1,007 | 1,534 | 1,000                      | 750                                 | 1,764                             | 1,500                             |  |

Table 1: Input, output, evaluation metrics, and number of testing instances of selected datasets.

#### **Appie**

### **Experiments**

- We try various non-streaming and streaming methods
- General finding: **streaming** > non-streaming

| Task           | Text-to-SQL |       |       | Python         | Tool Use  | Medical | QA       |
|----------------|-------------|-------|-------|----------------|-----------|---------|----------|
| Dataset        | Spider      | CoSQL | BIRD  | <b>DS-1000</b> | ToolBench | DDXPlus | HotpotQA |
| Non-streaming  |             |       |       |                |           |         |          |
| Zero-Shot      | 67.89       | 50.55 | 29.60 | 37.70          | 61.38     | 52.85   | 48.49    |
| Few-Shot       | 68.55       | 50.61 | 30.40 | 33.33          | 68.58     | 60.98   | 53.11    |
| CoT            | 61.53       | 46.01 | 27.23 | 25.93          | 58.98     | 58.20   | 52.47    |
| Self-Refine    | 67.75       | 49.49 | 29.62 | 36.30          | 60.67     | 52.89   | 43.53    |
| Streaming      |             |       |       |                |           |         |          |
| GrowPrompt     | 69.90       | 51.97 | 30.35 | 33.77          | 65.07     | 55.10   | 51.38    |
| MemPrompt      | 70.78       | 53.29 | 31.99 | 35.47          | 64.31     | 54.02   | 52.62    |
| Self-StreamICL | 74.63       | 55.05 | 35.31 | 41.30          | 71.33     | 70.56   | 54.80    |
| MAM-StreamICL  | 75.69       | 55.17 | 36.38 | 43.10          | 75.87     | 83.50   | 55.20    |

Table 2: Averaged performance of three LLM agents across different baselines and datasets.



## What Makes Effective Streaming Strategies?

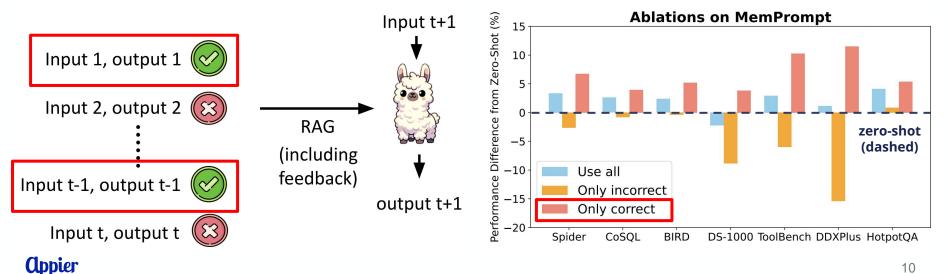
- We try various non-streaming and streaming methods
- General finding: **streaming** > non-streaming

Table 2: Averaged performance of three LLM agents across different baselines and datasets.

| Task                                                                    | Text-to-SQL                             |                                         |                                         | Python                                  | <b>Tool Use</b>                         | Medical                                 | QA                                      |
|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Dataset                                                                 | Spider                                  | CoSQL                                   | BIRD                                    | <b>DS-1000</b>                          | ToolBench                               | DDXPlus                                 | HotpotQA                                |
| What m<br>m                                                             |                                         |                                         |                                         |                                         | aming<br>In oth                         |                                         | hods                                    |
| Streaming<br>GrowPrompt<br>MemPrompt<br>Self-StreamICL<br>MAM-StreamICL | 69.90<br>70.78<br>74.63<br><b>75.69</b> | 51.97<br>53.29<br>55.05<br><b>55.17</b> | 30.35<br>31.99<br>35.31<br><b>36.38</b> | 33.77<br>35.47<br>41.30<br><b>43.10</b> | 65.07<br>64.31<br>71.33<br><b>75.87</b> | 55.10<br>54.02<br>70.56<br><b>83.50</b> | 51.38<br>52.62<br>54.80<br><b>55.20</b> |

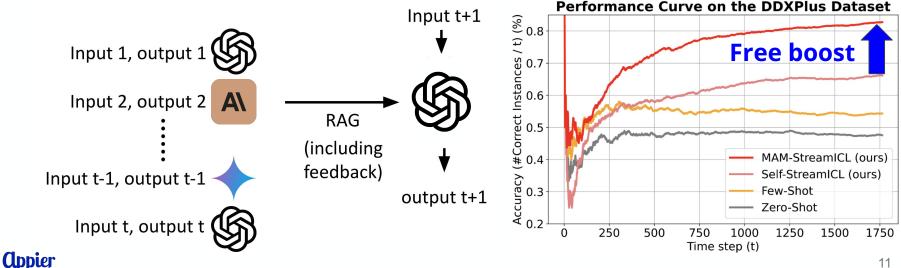
## **Only Save Correct LLM Output to RAG Memory**

- Saving only the correct LLM self-generated outputs to RAG memory is more beneficial for performance boost
- Collecting incorrect self-output even hurts performance

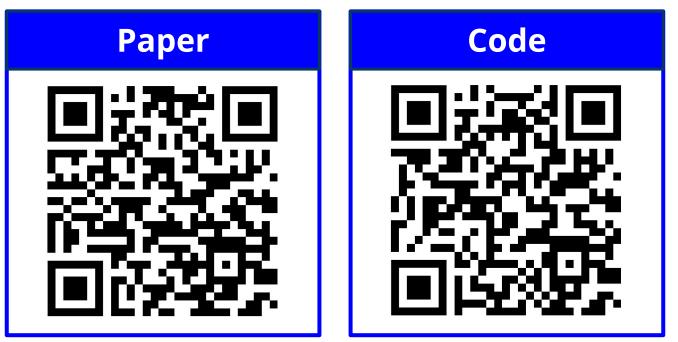


# **Sharing Memory Across Multiple LLMs**

- Make different LLMs take turns to solve problems at each time step, and share the RAG memory together
- **Same** averaged inference **cost** of using a single LLM!



### For Details, Check Out our Paper and Code!



https://arxiv.org/abs/2406.08747

https://github.com/stream-bench/stream-bench