GAIA: Rethinking Action Quality Assessment for AI-Generated Videos

NeurIPS 2024 Dataset and Benchmark Track Spotlight

Zijian Chen¹, Wei Sun¹, Yuan Tian¹, Jun Jia¹, Zicheng Zhang¹, Jiarui Wang¹, Ru Huang², Xiongkuo Min¹, Guangtao Zhai¹, Wenjun Zhang¹

¹Shanghai Jiao Tong University

²East China University of Science and Technology

- 1. Motivation
- 2. Construction of GAIA
- 3. Observations
- 4. Experiments

1. Motivation

> Background

- Action quality assessment (AQA), which aims to quantify how well actions are performed, is a
 growing area of research across various domains (e.g., sports event, health care, and public
 security)
- Assessing how well an action is presented can be difficult because of the inherent difference between real videos and generated videos.
- At minimum, a well-performed action should correctly contain all relevant objects as well as the action subject with recognizable motion presentation while conforming to the physical world dynamics.
- At present, it remains unclear to what degree any T2V model can achieve visually rational action generation that varies in action categories, much less the cognitive mechanism of action quality that affects human perception.

1. Motivation

> The limitations of existing AQA datasets

- Predominantly focus on *domain-specific* actions from real videos and collect *coarse-grained* expert-only human ratings on limited dimensions.
- The content discrepancies in those AQA videos are often subtle, as the action subjects typically perform similar actions within a consistent environment (*lacks of scene diversity*)

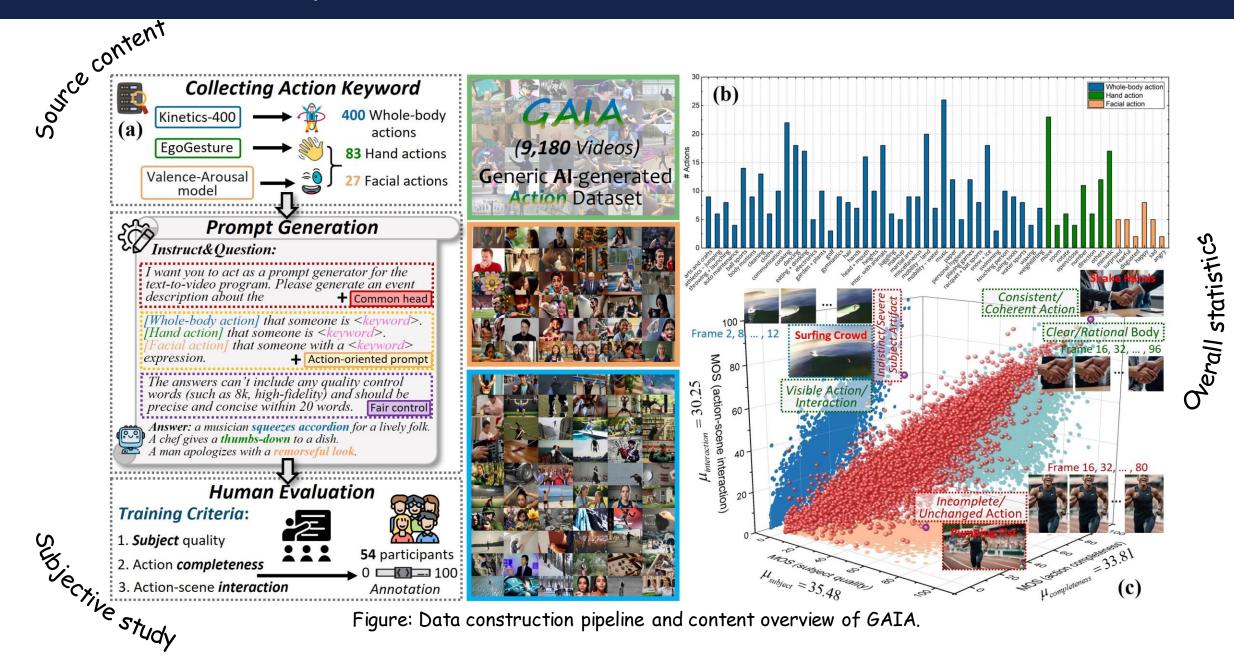
Dataset	Source	Action	Samples	Duration	Avg.Dur.	Resolution	FPS	SS
Dataset	Source	Action	Samples	Duration	Arg.Dui.	Resolution	115	55
MIT Dive (2014) [79]	Realdiving	_	159	0.25h	6.0s	320×240	30	Judge
UNLV Dive (2017) [78]	Realdiving	_	370	0.4h	3.8s	320×240	30	Judge
AQA-7-Dive (2019) [76]	Realdiving	_	549	0.6h	4.1s	320×240	30	Judge
MTL-AQA (2019) [77]	Realdiving	_	1,412	1.5h	4.1s	1920×1080	25	Judge
Rhyth. Gym. (2020) [118]	Realgymnastics	_	1,000	26.3h	95s	1280×720	25	Judge
FSD-10 (2020) [65]	Realskating	10	1,484	_	3-30s	1080×720	30	Judge
Fitness-AQA (2022) [75]	Realworkout	3	13,049	14.9h	4.1s	$480^2 - 720^2$	30	Expert
FineDiving (2022) [114]	Realdiving	52	3,000	3.5h	4.2s	256×256	15	Judge
LOGO (2023) [121]	Real _{swimming}	12	200	11.3h	204s	1280×720	25	Judge
GAIA	AI-generated	510	9,180	7.1h	2.8s	256 ² -2048 ²	4-50	Mixture

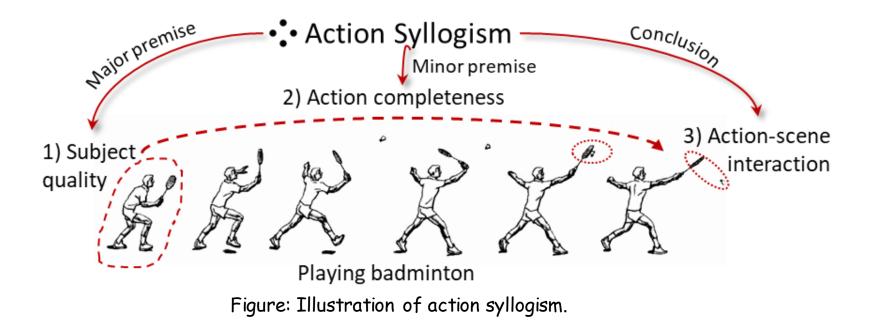
Table: Comparison of **GAIA** and existing AQA datasets. SS indicates the source of scores. Mix indicates that the participants in human evaluation are recruited across different backgrounds.

1. Motivation

> The limitations of existing AQA methods

- Mainly follow a pose-based or vision-based feature extraction, aggregation, and score regression ternary form, which usually adopt powerful 3D backbone networks that are pre-trained on large action recognition datasets for better feature migration.
- A distinguishing characteristic of generated videos is that they may contain atypical actions with various body or object artifacts over time, such as aberrant limb count, irrational object shape, and physically implausible motion, due to the stochasticity and unstable nature of the diffusion process.
- In such cases, the model learned from real action videos may fail in AIGVs with worse prediction performance.




Figure: Data construction pipeline and content overview of GAIA.

Video [48] 2Video-Zero [52] elScope [105] Scope _{v2-576w} [8] e [109] oCrafter1 [15]	22.05 23.03 23.03 23.06 23.09	T2V T2V T2V T2V T2V	480×480 512×512 256×256	8 4 8	4s 2s	12s 21s	– Pose/Edge Ctrl	√ √
elScope [105] Scope _{v2-576w} [8] e [109]	23.03 23.06 23.09	T2V T2V	256×256			21s	Pose/Edge Ctrl	\checkmark
Scope _{v2-576w} [8] le [109]	23.06 23.09	T2V		8	2			
Scope _{v2-576w} [8] le [109]	23.09		576200	0	2s	6s	_	\checkmark
e [109]			576×320	8	3s	20s	—	\checkmark
		T2V	512×320	8	2s	14s	Interpol./Super Res.	\checkmark
ocratter [15]	23.10	T2V, I2V	512×320	8	2s	41s	_	\checkmark
	23.10	T2V, I2V	1024×576	8	2s	ООМ	—	\checkmark
v-1 [119]	23.10	T2V	576×320	8	4s	231s	—	\checkmark
hot-XL [70]	23.10	T2V	672×384	8	1s	14s	Personalized	\checkmark
nateDiff [40]	23.12	T2V, I2V	384×256	8	2s	10s	Cam. Ctrl	\checkmark
oCrafter2 [16]	24.01	T2V, I2V	512×320	8	2s	45s	—	\checkmark
a [117]	24.03	T2V, I2V, V2V	1024×576	25	>12s	ООМ	Multi-Agent	\checkmark
1 [31]	23.02		768×448	24	4s	52s†	Style	
no [2]	23.10	T2V, I2V	2048×1536	15	4s	$60s^{\dagger}$	Style, Cam. Ctrl	_
2 [1]	23.12	T2V, I2V	1408×768	24	4s	140s†	Mot./Cam. Ctrl	_
[6]	23.12	T2V, I2V, V2V	1088×640	24	3s	45s†	Mot./Cam. Ctrl, Sound	_
erEnds [5]	23.12	T2V, I2V	1024×576	10	3s	260s†	_	_
	24.01			50	4s	386s [†]	Style, Cam. Ctrl	_
•				24	3s			_
					4s			\checkmark
	ateDiff [40] Crafter2 [16] [117] [[31] 10 [2] 2 [1] [6]	ateDiff [40] 23.12 oCrafter2 [16] 24.01 [117] 24.03 1 [31] 23.02 no [2] 23.10 2 [1] 23.12 [6] 23.12 rEnds [5] 23.12 nValley [3] 24.01 e Video [7] 24.03	ateDiff [40] 23.12 $T2V, I2V$ $DCrafter2 [16]$ 24.01 $T2V, I2V$ $[117]$ 24.03 $T2V, I2V, V2V$ $1 [31]$ 23.02 $V2V$ $no [2]$ 23.10 $T2V, I2V$ $2 [1]$ 23.12 $T2V, I2V$ $2 [1]$ 23.12 $T2V, I2V$ $[6]$ 23.12 $T2V, I2V, V2V$ $rEnds [5]$ 23.12 $T2V, I2V, V2V$ $nValley [3]$ 24.01 $T2V, I2V$ h Studio [4] 24.01 $T2V, I2V$	ateDiff [40]23.12T2V, I2V 384×256 oCrafter2 [16]24.01T2V, I2V 512×320 [117]24.03T2V, I2V, V2V 1024×576 1 [31]23.02 $V2V$ 768×448 no [2]23.10T2V, I2V 2048×1536 2 [1]23.12T2V, I2V 1408×768 [6]23.12T2V, I2V, V2V 1088×640 rEnds [5]23.12T2V, I2V, V2V 1088×640 rEnds [5]23.12T2V, I2V, V2V 1024×576 Nalley [3]24.01T2V, I2V 1184×672 h Studio [4]24.01T2V, I2V 1920×1080	ateDiff [40]23.12T2V, I2V 384×256 8oCrafter2 [16]24.01T2V, I2V 512×320 8[117]24.03T2V, I2V, V2V 1024×576 251 [31]23.02 $V2V$ 768×448 24no [2]23.10T2V, I2V 2048×1536 152 [1]23.12T2V, I2V 1408×768 24[6]23.12T2V, I2V, V2V 1024×576 10no [2]23.12T2V, I2V, I2V 1408×768 24[6]23.12T2V, I2V, V2V 1088×640 24rends [5]23.12T2V, I2V, I2V 1024×576 10nValley [3]24.01T2V, I2V 1184×672 50h Studio [4]24.01T2V, I2V 1920×1080 24	ateDiff [40]23.12T2V, I2V 384×256 82soCrafter2 [16]24.01T2V, I2V 512×320 82s[117]24.03T2V, I2V, V2V 1024×576 25>12s1 [31]23.02V2V 768×448 244sno [2]23.10T2V, I2V 2048×1536 154s2 [1]23.12T2V, I2V 1408×768 244s[6]23.12T2V, I2V, V2V 1088×640 243srEnds [5]23.12T2V, I2V 1024×576 103snValley [3]24.01T2V, I2V 1184×672 504sh Studio [4]24.01T2V, I2V 1920×1080 243s	ateDiff [40]23.12T2V, I2V 384×256 82s10soCrafter2 [16]24.01T2V, I2V 512×320 82s $45s$ [117]24.03T2V, I2V, V2V 1024×576 25>12s OOM 1 [31]23.02 $V2V$ 768×448 244s $52s^{\dagger}$ no [2]23.10T2V, I2V 2048×1536 154s $60s^{\dagger}$ 2 [1]23.12T2V, I2V 1408×768 244s $140s^{\dagger}$ [6]23.12T2V, I2V, V2V 1088×640 243s $45s^{\dagger}$ rEnds [5]23.12T2V, I2V, V2V 1024×576 103s $260s^{\dagger}$ nValley [3]24.01T2V, I2V 1184×672 504s $386s^{\dagger}$	ateDiff [40]23.12T2V, I2V 384×256 82s10sCam. CtrloCrafter2 [16]24.01T2V, I2V 512×320 82s $45s$ -[117]24.03T2V, I2V, V2V 1024×576 25>12sOOMMulti-Agent1 [31]23.02V2V 768×448 244s $52s^{\dagger}$ Styleno [2]23.10T2V, I2V2048 $\times 1536$ 154s $60s^{\dagger}$ Style, Cam. Ctrl2 [1]23.12T2V, I2V1408 $\times 768$ 244s $140s^{\dagger}$ Mot./Cam. Ctrl[6]23.12T2V, I2V, V2V1088 $\times 640$ 243s $45s^{\dagger}$ Mot./Cam. Ctrl, SoundrEnds [5]23.12T2V, I2V 1024×576 103s $260s^{\dagger}$ -nValley [3]24.01T2V, I2V 1184×672 504s $386s^{\dagger}$ Style, Cam. Ctrlh Studio [4]24.01T2V, I2V 1920×1080 243s $196s^{\dagger}$ Mot./Cam./fps Ctrl

Table: Summary of popular video generation models: from open-source lab studies to large-scale commercial creation platforms. We tested the average generation speed (seconds/item) on an NVIDIA RTX4090 locally, except for those closed-source models. OOM is the abbreviation of out-of-memory. †We report the online generation speed under free plan.

> Design Philosophy: the Action Syllogism

- We propose a causal reasoning-based evaluation strategy
- We decompose an action process into three parts: 1) action subject as major premise, 2) action completeness as minor premise, and 3) interaction between action and scenes as conclusion, according to the syllogism theory

Timothy J Smiley. What is a syllogism? Journal of philosophical logic, pages 136–154, 1973.

Sangeet Khemlani and Philip N Johnson-Laird. Theories of the syllogism: A meta-analysis. Psychological bulletin, 138(3):427, 2012.

> Rationale for the Action Syllogism:

- The visibility of the action in videos is greatly affected by the rendering quality of the action subject, which is a crucial element of visual saliency information.
- Unlike parallel-form feedbacks, the order of these three parts in action syllogism inherently aligns with the human reasoning process.

> Merits of the Action Syllogism:

- Can more clearly identify and analyze the specific elements that contribute to the perceived quality of the action.
- Inherently aligned with human perception and can help in understanding how different parts of action are perceived by the public, which can lead to insights into what makes AI-generated action convincing or unconvincing.
- Allows for a comparative analysis of AI-generated action against natural human action, revealing where AI excels and where it may need improvement.

Figure: Screenshot of the rating interface for human evaluation. Participants are instructed to rate three action-related dimensions of AI-generated videos, i.e., subject quality, action completeness, and action-scene interaction, based on the given action keyword and prompt.

Ca	Category	Ge	ender	Backg	Age	
Ċ.	egor j	Male	Female	w/AIGC	w/o AIGC	. ge
Nu	mber	39	15	25	29	23.4±2.6

Table: Statistics of participants. w/AIGC and w/o AIGC denote participants who have or do not have used AI generation tools, respectively.

Next Video

Replay

Submit Rating

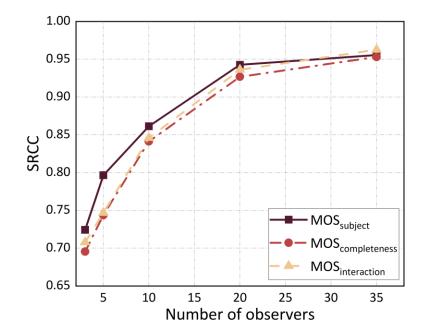


Figure: SRCC between MOSs as the observers increases

3. Observations

- 1. Most models exhibit left-skewed MOS distribution in all three dimensions.
- 2. Additionally, we can observe a trend of increasing performance year by year, from the Text2Videozero and ModelScope released in March 2023 to the VideoCrafter2 in early 2024.
- 3. Most models prove decent proficiency on one single dimension, i.e., better subject quality than action completeness and action-scene interaction, which exposes the defects of existing models in producing temporal coherent and complete actions.

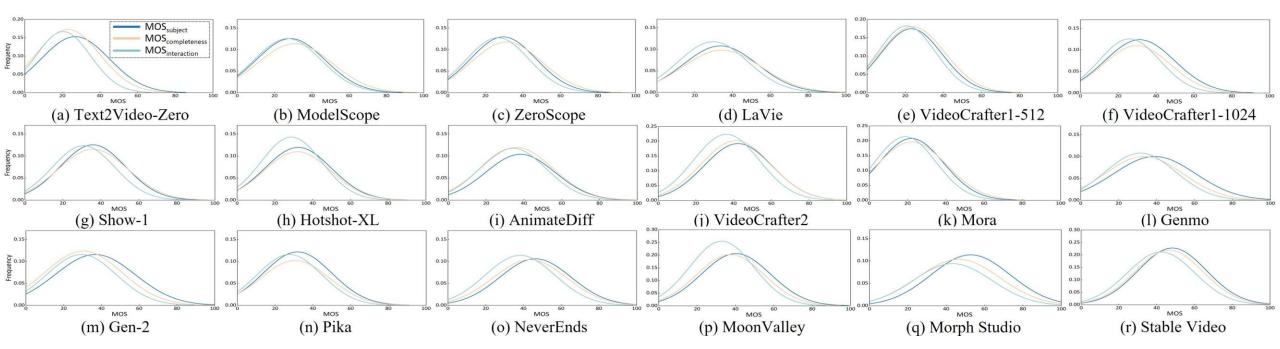


Figure: MOS distributions across different models in terms of subject quality, action completeness, and action-scene interaction. 11 Lab studies: (a)-(k); 7 Commercial applications: (I)-(r).

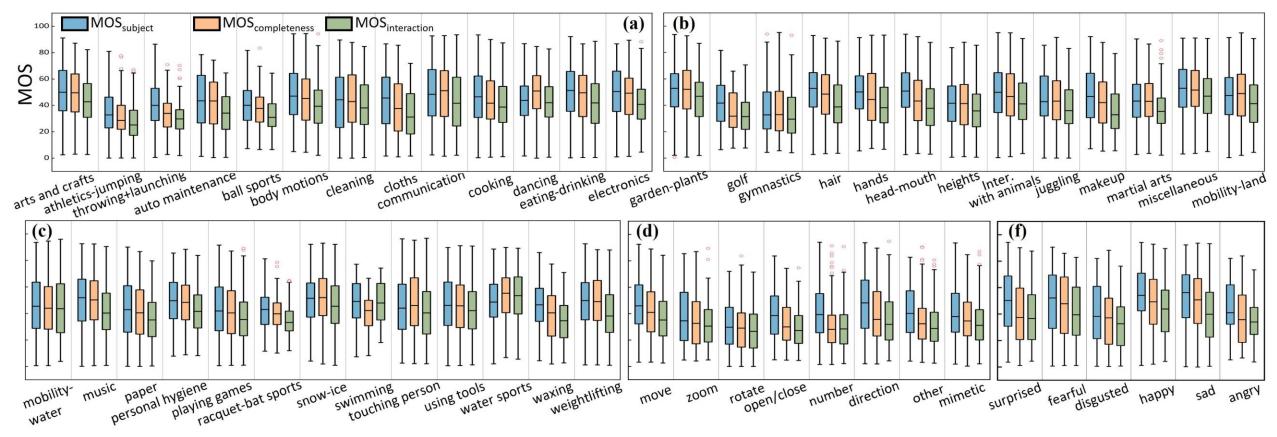


Figure: Box plots of MOSs, MOSc, and MOSi across action categories. (a), (b), and (c) show whole-body actions. (d) and (f) show hand and facial actions. For each box, median is the central box, and the edges of the box represent the 25th and 75th percentiles, while red circles denote outliers.

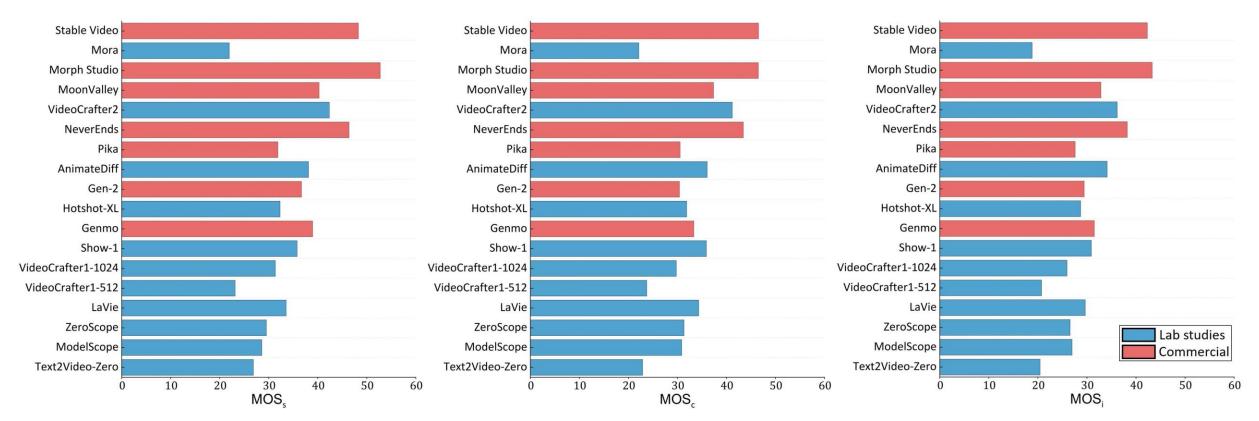


Figure: Detailed model-wise comparison in terms of MOSs, MOSc, MOSi.

3. Observations

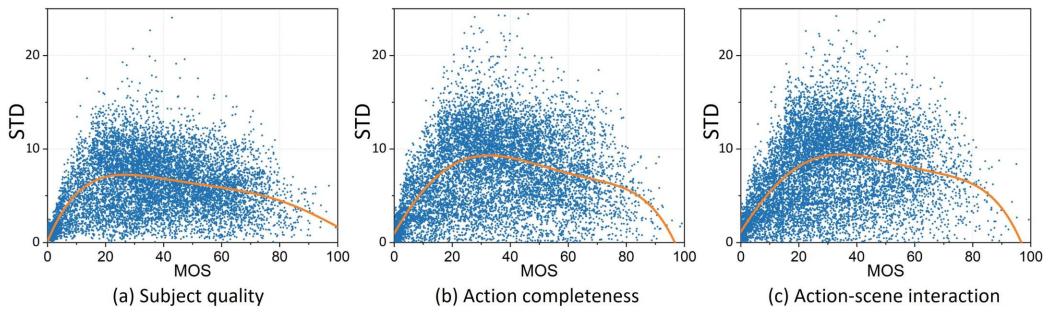


Figure: Scatter plots about MOS against its standard deviation (STD) and five-parameter polynomial fitting plots (orange line) of three perspectives of action quality.

- 1. Humans are more consistent in perceiving high-quality actions.
- 2. Medium- and low-quality actions exhibit greater diversity, leading to a more pronounced divergence among individuals.
- 3. The perception of spatial quality distortion in action is less divergent than the temporal consistency and rationality distortion

> We want to figure out (main results):

- Do conventional AQA methods still work?
- Which action-related metric performs better?
- The performance of video quality assessment (VQA) methods.
- What about the video-text alignment metrics?

Table: Performance benchmark on GAIA. All-Combined indicates that we sum the MOS of three dimensions and rescale it to [0, 100] as the overall action quality score. \clubsuit , \clubsuit , \diamond , and \heartsuit denote the evaluated **conventional AQA method**, **action-related metrics**, VQA methods, and video-text alignment metrics, respectively. All experiments for AQA and VQA methods are retrained on each dimension under 10 random train-test splits at a ratio of 8:2.

Dimension	Pre-training/	Sub	ject	Compl	eteness	Intera	action	All-Co	mbined
Methods / Metrics	Initialization	SRCC↑	PLCC↑	SRCC↑	PLCC↑	SRCC↑	PLCC↑	SRCC↑	PLCC↑
♠USDL (CVPR'20) [97]		0.4197	0.4203	0.4365	0.4517	0.4289	0.4434	0.4223	0.4321
ACTION-NET (ACM MM'20) [118]	Vinction [14]	0.4533	0.4612	0.4722	0.4765	0.4703	0.4829	0.4587	0.4592
♠CoRe (ICCV'21) [116]	Kinetics [14]	0.4301	0.4343	0.4538	0.4577	0.4521	0.4514	0.4437	0.4415
♠TSA (CVPR'22) [114]		0.4435	0.4477	0.4963	0.4981	0.4941	0.4953	0.4861	0.4823
Subject Consistency [50]	DINO [12]	0.2447	0.2362	0.2116	0.2056	0.2034	0.1912	0.2289	0.2273
♣Motion Smoothness [50]	AMT [62]	0.2402	0.1913	0.1474	0.1625	0.1741	0.1693	0.1957	0.1813
♣Dynamic Degree [50]	RAFT [98]	0.1285	0.0831	0.0903	0.0682	0.1141	0.0758	0.1162	0.0787
Human Action [50]	UMT [61]	0.2453	0.2369	0.2895	0.2812	0.2861	0.2743	0.2831	0.2741
Action-Score [66]	VideoMAE V2 [106]	0.2023	0.1823	0.2867	0.2623	0.2689	0.2432	0.2600	0.2377
♣Flow-Score [66]	RAFT [98]	0.1471	0.1541	0.0816	0.1273	0.1041	0.1309	0.1166	0.1430
$\overline{O}\overline{TLVQM}(\overline{TIP'19})[\overline{55}]$	NĀ (handcraft)	0.5037	0.5137	$0.41\overline{2}7$	0.4158	0.4079	0.4093	0.4655	0.4783
◊VIDEVAL (TIP'21) [101]	NA (handcraft)	0.5237	0.5446	0.4283	0.4375	0.4121	0.4234	0.4684	0.4801
◊VSFA (ACM MM'19) [59]	None	0.5594	0.5762	0.4940	0.5017	0.4709	0.4811	0.5085	0.5215
♦BVQA (TCSVT'22) [58]	fused [24, 35, 14, 49, 32]	0.5702	0.5888	0.4876	0.4946	0.4761	0.4825	0.5201	0.5289
♦SimpleVQA (ACM MM'22) [96]	Kinetics [14]	0.5920	0.5974	0.4981	0.5078	0.4843	0.4971	0.5219	0.5322
♦FAST-VQA (ECCV'22) [111]	Kinetics [14]	0.6015	0.6092	0.5157	0.5215	0.5154	0.5216	0.5276	0.5475
♦DOVER (ICCV'23) [112]	LSVQ [115]	0.6173	0.6301	0.5198	0.5323	0.5164	0.5278	0.5335	0.5502
©CLIPScore (ViT-B/16) [43]	OpenAI-400M [80]	0.3360	0.3314	0.3841	0.3777	0.3753	0.3632	0.3777	0.3711
♡CLIPScore (ViT-B/32) [43]	OpenAI-400M [80]	0.3398	0.3330	0.3944	0.3871	0.3875	0.3821	0.3815	0.3826
\heartsuit same as the above	LAION-2B [87]	0.3179	0.3101	0.3551	0.3511	0.3504	0.3380	0.3531	0.3458
♡CLIPScore (ViT-L/14) [43]	OpenAI-400M [80]	0.3211	0.3156	0.3657	0.3574	0.3585	0.3426	0.3601	0.3515
♡BLIPScore [60]	COCO [63]	0.3453	0.3386	0.4174	0.4082	0.4044	0.3994	0.4118	0.4054
♡LLaVAScore [64]	LLaVA-PT [25]	0.3484	0.3436	0.4189	0.4133	0.4077	0.4025	0.4124	0.4086
♡InternLMScore [28]	fused [63, 17, 10, 90, 88]	0.3678	0.3642	0.4324	0.4257	0.4301	0.4227	0.4314	0.4246

> We want to figure out (extended results):

- Whether CLIP-based metrics excel in assessing action quality?
- Whether the combination of different metrics can improve the perceptual consistency of action quality?

Table: Performance comparison on coarse-grained actions (whole-body) and fine-grained actions (hand and facial) from GAIA dataset.

Dimension	Subcot	Sub	ject	Compl	eteness	Interaction		
Metrics	Subset	SRCC ↑	PLCC↑	SRCC ↑	PLCC↑	SRCC ↑	PLCC ↑	
	Whole-body	0.3381	0.3293	0.3732	0.3656	0.3698	0.3557	
CLIPScore (ViT-B/16)	Hand	0.3167	0.3084	0.3649	0.3564	0.3361	0.3234	
	Facial	0.2221	0.2326	0.2307	0.2525	0.2711	0.2861	
	Whole-body	0.3848	0.3753	0.4208	0.4128	0.4168	0.4023	
CLIPScore (ViT-B/32)	Hand	0.3835	0.3788	0.4159	0.4139	0.3964	0.3910	
	Facial	0.1556	0.1596	0.1747	0.1859	0.2175	0.2201	
CLIPScore (ViT-L/14)	Whole-body	0.3135	0.3055	0.3499	0.3411	0.3481	0.3301	
	Hand	0.3392	0.3269	0.3639	0.3499	0.3373	0.3219	
	Facial	0.1743	0.1806	0.1775	0.1927	0.2294	0.2359	

Dimension	Sub	ject	Compl	eteness	Interaction		
Metrics	SRCC ↑	PLCC↑	SRCC↑	PLCC↑	SRCC ↑	PLCC↑	
Human Action	0.2453	0.2369	0.2895	0.2812	0.2861	0.2743	
Action-Score	0.2023	0.1823	0.2867	0.2623	0.2689	0.2432	
Flow-Score	0.1471	0.1541	0.0816	0.1273	0.1041	0.1309	
Human Action+Action-Score	0.1530	0.1355	0.2333	0.2098	0.2156	0.1912	
Human Action+Flow-Score	0.1567	0.1550	0.0940	0.1293	0.1155	0.1324	
Action-Score+Flow-Score	0.1199	0.1464	0.0439	0.1175	0.0679	0.1214	
Human Action+Action-Score+Flow-Score	0.1279	0.1484	0.0530	0.1198	0.0767	0.1237	
VSFA	0.1934	0.1917	0.1379	0.1322	0.1602	0.1658	
VSFA+Human Action	0.0836	0.0790	0.0059	0.0142	0.0135	0.0096	
VSFA+Action-Score	0.2599	0.2531	0.3149	0.3046	0.3054	0.2939	
VSFA+Flow-Score	0.1309	0.1506	0.0714	0.1253	0.0914	0.1283	
TSA	0.4435	0.4477	0.4963	0.4981	0.4941	0.4953	
DOVER	0.6173	0.6301	0.5198	0.5323	0.5164	0.5278	
TSA + DOVER	0.5744	0.5831	0.5068	0.5147	0.5081	0.5158	
CLIPScore-B/16	0.3360	0.3314	0.3841	0.3777	0.3753	0.3632	
CLIPScore-B/32	0.3398	0.3330	0.3944	0.3871	0.3875	0.3821	
CLIPScore-L/14	0.3211	0.3156	0.3657	0.3574	0.3585	0.3426	
CLIPScore-B/16+CLIPScore-B/32	0.3746	0.3698	0.4234	0.4172	0.4148	0.4028	
CLIPScore-B/16+CLIPScore-L/14	0.3479	0.3428	0.3967	0.3893	0.3878	0.3738	
CLIPScore-B/32+CLIPScore-L/14	0.3747	0.3687	0.4218	0.4145	0.4140	0.3998	
CLIPScore-B/16+CLIPScore-B/32+CLIPScore-L/14	0.3734	0.3681	0.4227	0.4157	0.4140	0.4006	
VSFA+CLIPScore-B/16	0.3782	0.3733	0.4014	0.3990	0.3984	0.3906	
VSFA+CLIPScore-B/32	0.4162	0.4120	0.4377	0.4355	0.4364	0.4288	
VSFA+CLIPScore-L/14	0.3651	0.3582	0.3826	0.3793	0.3821	0.3709	
VSFA+CLIPScore-B/16+CLIPScore-B/32	0.4004	0.3938	0.4361	0.4303	0.4308	0.4192	
CLIPScore-B/16+CLIPScore-B/32+Human Action	0.3585	0.3581	0.4041	0.4027	0.3960	0.3885	

Table: Results for the combination of different metrics on the GAIA dataset.

THANKS