Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions

Minghan Li^1* Heng Li^1* Zhi-Qi Cheng^1† Yifei Dong^2 Yuxuan Zhou^3 Jun-Yan He^4 Qi Dai^5 Teruko Mitamura^1 Alexander G. Hauptmann^1

1^Carnegie Mellon University 2^Columbia University 3^University of Mannheim 4^Alibaba Group 5^Microsoft Research

Project Page: https://lpercc.github.io/HA3D_simulator/

Introduction to Human-Aware Vision-and-Language Navigation (HA-VLN)

Point 1: Vision-and-Language Navigation (VLN) Goals

• Description: VLN develops embodied agents that navigate environments based on human instructions.

Point 2: Limitations in Traditional VLN Frameworks

• Description: Current VLN systems depend on static environments and optimal expert supervision, limiting real-world transferability.

Point 3: Objective of HA-VLN

• Description: HA-VLN aims to bridge the gap between simulation and reality by incorporating dynamic human activities, making navigation more applicable to real-world environments.

Challenges in VLN and the Sim2Real Transfer Gap

Point 1: Static Environments

• Description: Traditional VLN agents operate in fixed settings, missing dynamic elements seen in real-world environments.

Point 2: Panoramic Action Spaces

• Description: Agents have an unrealistic 360° view, unlike human-limited vision, making Sim2Real transfer difficult.

Point 3: Reliance on Optimal Expert Supervision

• Description: Heavy dependence on idealized expert instructions limits agent adaptability to less predictable scenarios.

HA-VLN Scenario and the HA3D Simulator

Point 1: Dynamic Environments in HA-VLN

• Description: HA-VLN integrates 3D human motion models to simulate dynamic, realistic settings.

Point 2: SMPL Model for Human Representation

• Description: Uses the SMPL model to represent human motion and create interactive navigation scenarios for agents.

Point 3: Objective of HA3D Simulator

• Description: HA3D combines dynamic human activities with the Matterport3D dataset, allowing agents to interact with realistic, populated environments.

Figure: Figure 1 ("HA-VLN scenario") - illustrating agent interaction with dynamic human activities.

HA3D Simulator and Dataset Annotation Process

Point 1: Integration of Human Activity and Pose Simulation (HAPS)

• Description: HA3D incorporates the HAPS dataset, offering 145 human activity descriptions and 435 3D human motion models for realistic dynamic environments.

Point 2: Annotation Tool for Human Models

• Description: The simulator includes a tool for placing human models in 29 indoor areas across 90 scenes, enhancing agent interaction capabilities.

Point 3: Realistic Environment Rendering

Description: Combines human activities with photorealistic 3D scenes, facilitating HA-VLN training.

HA-R2R Dataset and Instruction Analysis

Point 1: Expansion of Room-to-Room Dataset

• Description: HA-R2R adds human activity descriptions to the original R2R dataset, enriching training diversity.

Point 2: Expanded Vocabulary and Activity Coverage

• Description: The dataset includes over 21,500 instructions with a broader vocabulary, facilitating more robust training scenarios.

Point 3: Balanced Instruction Length Distribution

• Description: HA-R2R has more uniform instruction lengths, aiding in balanced and adaptable training.

Figure: Figure 3 (Panels A-C) - displaying the effects of human activities on instruction length, comparing HA-R2R and R2R distributions, and illustrating viewpoints

VLN-CM and VLN-DT Agent Models for HA-VLN

Point 1: Expert-Supervised Cross-Modal (VLN-CM)

- Description: VLN-CM uses expert demonstrations to guide agents through navigation tasks, utilizing a cross-modality fusion module for optimal understanding.
- **Point 2**: Non-Expert-Supervised Decision Transformer (VLN-DT)
 - *Description*: VLN-DT relies on random trajectories rather than expert supervision, demonstrating strong generalization capability.

Point 3: Cross-Modality Fusion Module

• Description: Both agents integrate visual and linguistic information dynamically, enabling nuanced navigation actions.

.	* Prediction	Action De	coder		Casual Transform	ter (Autoregress	tva)		,
	Information	Unified Representation		唐 尚	1	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	2	Trajectory T	
	and the second s			State 🔤	191	(1)	÷	(M)	
	Context Representation	Cross Modality Module	fusion		Cross Mo M	dality Fusion odule	}		
	-+W-+W-+	ta ba + ka → ka +	imaga Footure	Average Pooling			Imag	90	
	Ben Embedding	8 - 8 8 B D		Bert Embedding	6 - N N		E		
	Instruction I	at the deak [SEP]	VLN-CM	Instruction T	1 n n m	deak (307)		VLN-DT	

Training Strategies and Expert Supervision in HA-VLN

- Point 1: Expert vs. Non-Expert Supervision
 - *Description*: Highlights the adaptability of agents trained without expert guidance, which allows for better generalization in dynamic environments.
- **Point 2**: Adaptive Policy Development
 - Description: Policies adapted to dynamic conditions in HA-VLN improve navigation flexibility and responsiveness.
- Point 3: Reward Function for Safe Navigation
 - Description: HA-VLN's custom reward function encourages agents to optimize paths while maintaining safe distances in human-populated environments.

0.027220		Validat	ion Seen		Validation Unseen				
Action Space	$\mathbf{NE}\downarrow$	$\mathbf{TCR}\downarrow$	$\mathbf{CR}\downarrow$	SR †	$\mathbf{NE}\downarrow$	$\mathbf{TCR}\downarrow$	CR ↓	SR †	
Egocentric	7.21	0.69	1.00	0.20	8.09	0.54	0.58	0.16	
Panoramic	5.58	0.24	0.80	0.34	7.16	0.25	0.57	0.23	
Difference	-1.63	-0.45	-0.20	+0.14	-0.93	-0.29	-0.01	+0.07	
Percentage	-22.6%	-65.2%	-20.0%	+70.0%	-11.5%	-53.7%	-1.7%	+43.8%	

Table: Table 1 ("Egocentric vs. Panoramic Action Space Comparison") and Table 2 ("Static vs. Dynamic Environment Comparison").

Table 2 ("Optimal Ve Sub Optimal Export Comparison") comparing performance across various supervision levels.

Table 2: Static vs. Dyn	amic Environment	Comparisor
-------------------------	------------------	------------

	Validati	on Seen	Validation Unseer			
Environment Type	$\mathbf{NE}\downarrow$	SR ↑	$\mathbf{NE}\downarrow$	on Unseen SR↑ 0.62 0.50 -0.12 -19.4%		
Static	2.68	0.75	4.01	0.62		
Dynamic	5.24	0.40	3.98	0.50		
Difference Percentage	+2.56 +95.5%	-0.35 -46.7%	-0.03 -0.7%	-0.12 -19.4%		

Table 3: Optimal vs. Sub-Optimal Expert Com	parison
---	---------

-		Validatio	on Seen	Validation Unseen					
Expert Type	$\mathbf{NE}\downarrow$	$\mathbf{TCR}\downarrow$	CR↓	$\mathbf{SR}\uparrow$	NE ↓	$\mathbf{TCR}\downarrow$	$\mathbf{CR}\downarrow$	SR ↑	
Optimal	3.61	0.15	0.52	0.53	5.43	0.26	0.69	0.41	
Sub-optimal	3.98	0.18	0.63	0.50	5,24	0.24	0.67	0.40	
Difference Percentage	+0.37 +10.2%	+0.03	+0.11	-0.03 -5.7%	-0.19 -3.5%	-0.02 -7.7%	-0.02 -2.9%	-0.01	

Evaluation Metrics and Results for HA-VLN

Point 1: Human Activity-Aware Metrics

• Description: New metrics focus on interactions with dynamic elements, crucial for assessing Sim2Real transfer quality.

Point 2: Performance Gap Analysis

• Description: Evaluation reveals substantial gaps between HA-VLN agents and the Oracle, especially in dynamically populated settings.

Point 3: Comparison with State-of-the-Art (SOTA) Agents

• Description: Retrained SOTA agents show limited success in dynamic HA-VLN environments, underscoring challenges in complex real-world settings.

Table: Table 4 ("Performance of SOTA VLN Agents on HA-VLN (Retrained)") - presenting performance metrics to highlight the current challenges.

0000 0	Validation Seen							Validation Unseen						
Method	w/o human		w/ human		Difference		w/o human		w/ human		Difference			
	NE ↓	SR †	NE ↓	SR ↑	NE	SR	NE \downarrow	SR ↑	NE ↓	SR †	NE	SR		
Speaker-Follower [12]	6.62	0.35	5.58	0.34	-15.7%	-2.9%	3.36	0.66	7.16	0.23	+113.1%	-65.2%		
Rec (PREVALENT) [21]	3.93	0.63	4.95	0.41	+25.9%	-34.9%	2.90	0.72	5.86	0.36	+102.1%	-50.0%		
Rec (OSCAR) [21]	4.29	0.59	4.67	0.42	+8.9%	-28.8%	3.11	0.71	5.86	0.38	+88.4%	-46.5%		
Airbert [16]	4.01	0.62	3.98	0.50	-0.7%	-19.4%	2.68	0.75	5.24	0.40	+95.5%	-46.7%		

Table 4: Performance of SOTA VLN Agents on HA-VLN (Retrained)