

**Temporal Graph Benchmark** 

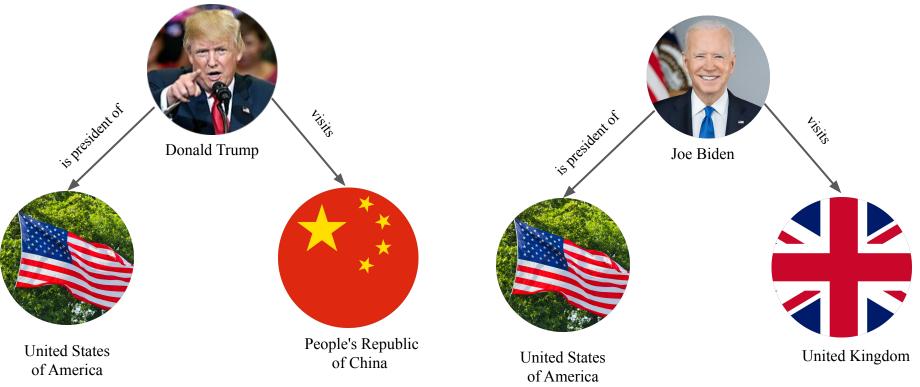
# **TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs**

Julia Gastinger\*, Shenyang Huang\*, Mikhail Galkin, Erfan Loghmani, Ali Parviz, Farimah Poursafaei, Jacob Danovitch, Emanuele Rossi, Ioannis Koutis, Heiner Stuckenschmidt, Reihaneh Rabbany, Guillaume Rabusseau

Website, Paper, Github, Pypi, Documentation

https://tgb.complexdatalab.com/
















#### Real World Relations Evolve Over Time

November 2017

June 2021

# Multi-Relational Temporal Graphs

Temporal Knowledge Graph (TKG)

is a set of quadruples (s, r, o, t)

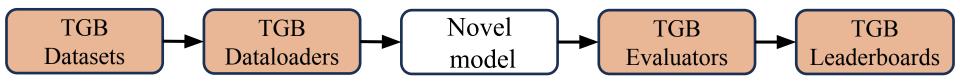
- subject s and object  $o \in V$
- relation  $r \in R$  and timestamp t.
- □ Knowledge bases
- Political event networks

Temporal Heterogeneous Graph (THG)

is a set of quadruples (s, r, o, t)

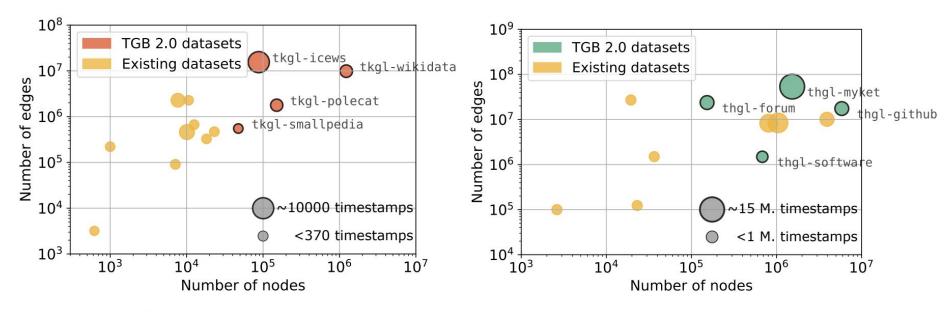
- With node type function  $\phi: V \to A$ .
- □ Software networks
- □ Social networks
- □ Interaction networks

#### **Task: Temporal Graph Extrapolation (Link Prediction)**


- Predict links between nodes in future time steps
- For a given query, e.g. (s, r, ?, t+), rank all nodes using a scoring function

### Limitations in Existing Literature

#### Inconsistent Evaluation


- TKG evaluation has inconsistent <u>metrics</u>, <u>settings</u> and <u>dataset versions</u>
- THG evaluation often only has <u>a single random negative</u> per positive edge
- Limited Dataset Size
  - $\circ$  Common TKG and THG datasets have  $\leq 2 \text{ million edges}$ ,  $\leq 1 \text{ million nodes}$

# TGB 2.0



- Large and Diverse Datasets
  - Four TKG and four THG datasets from five domains
- Automatic Data processing and Loading
  - Processed into numpy, PyTorch and PyG formats
- **Reproducible Evaluation** 
  - Data loaders, evaluators provided
- > Public and Online Leaderboard
  - Open for community submissions

#### TGB 2.0 Datasets



(a) Novel Temporal Knowledge Graphs

(b) Novel Temporal Heterogeneous Graphs

> Orders of magnitude larger in  $\underline{\# edges}, \underline{\# nodes}, \underline{\# timestamps}$ .

#### **Evaluation Protocol**

- Task: temporal graph extrapolation (link prediction)
- Metric: time-aware filtered MRR, rank true target out of many negatives
  - Select # of negative edges based on tradeoff between evaluation completeness & efficiency

TKG Evaluation

Predict (s, r, ?, t+) & (?, r, o, t+)

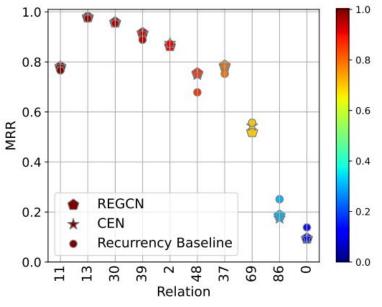
- **1-vs-all:** for smaller datasets, sample all ns samples.
- **1-vs-q:** sample **q** negatives with same edge type as true edge.

THG Evaluation

Predict (s, r, ?, t+)

1-vs-q: for all THG datasets, sample
q negatives with same node type as
the true destination.

# **TKG** Experiments


Table 2: **MRR** results for *Temporal Knowledge Graph Link Prediction* task. We report the average and standard deviation across 5 runs. First place is **bolded**, second place <u>underlined</u>.

| Method                                       | tkgl-smallpedia<br>Validation Test |                               | tkgl-polecat<br>Validation Test |                               | tkgl-icews<br>Validation Test |                               | tkgl-wikidata<br>Validation Test |                   |
|----------------------------------------------|------------------------------------|-------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------|
|                                              |                                    | and were care                 |                                 |                               |                               | and Angeometrical             | a sed at the set                 | and an and a star |
| EdgeBank <sub>tw</sub> [57]                  | 0.457                              | 0.353                         | 0.058                           | 0.056                         | 0.020                         | 0.020                         | 0.633                            | 0.535             |
| EdgeBank <sub><math>\infty</math></sub> [57] | 0.401                              | 0.333                         | 0.048                           | 0.045                         | 0.008                         | 0.009                         | 0.632                            | 0.535             |
| RecB <sub>train</sub> [15]                   | 0.639                              | 0.605                         | 0.203                           | 0.198                         | 0.270                         | 0.211                         | OOT                              | OOT               |
| RecB <sub>default</sub> [15]                 | 0.542                              | 0.486                         | 0.170                           | 0.167                         | 0.264                         | 0.206                         | OOT                              | OOT               |
| <b>RE-GCN</b> [41]                           | $0.631 \pm 0.001$                  | $0.594{\scriptstyle\pm0.001}$ | $0.191{\scriptstyle\pm0.003}$   | $0.175{\scriptstyle\pm0.002}$ | $0.232 \pm 0.003$             | $0.182 \pm 0.003$             | OOM                              | OOM               |
| CEN [39]                                     | 0.646±0.001                        | $0.612{\scriptstyle\pm0.001}$ | $0.204 \pm 0.002$               | $0.184{\scriptstyle\pm0.002}$ | $0.244 \pm 0.002$             | $0.187{\scriptstyle\pm0.003}$ | OOM                              | OOM               |
| TLogic [47]                                  | $0.631 \pm 0.000$                  | $0.595{\scriptstyle\pm0.001}$ | $0.236 \pm 0.001$               | $0.228{\scriptstyle\pm0.001}$ | 0.287±0.001                   | $0.186{\scriptstyle\pm0.001}$ | OOT                              | OOT               |

- The heuristic recurrency baseline performs competitively
- Scalability of existing methods are limited
- Out of Memory (OOM) / Out of Time (OOT)

#### Recurring Relations are Easier to Predict

#### (c) tkgl-smallpedia



- ➤ Warmer -> more recurring
- More recurring relations have higher MRR across methods

#### THG Experiments

Table 3: **MRR** results for *Temporal Heterogeneous Graph Link Prediction* task. We report the average and standard deviation across 5 runs. First place is **bolded**, second place <u>underlined</u>.

| Method                       | thgl-software                   |                                 | thgl-forum        |                   | thgl-github |       | thgl-myket |       |
|------------------------------|---------------------------------|---------------------------------|-------------------|-------------------|-------------|-------|------------|-------|
|                              | Validation                      | Test                            | Validation        | Test              | Validation  | Test  | Validation | Test  |
| EdgeBank <sub>tw</sub> [57]  | 0.279                           | 0.288                           | 0.534             | 0.534             | 0.355       | 0.374 | 0.248      | 0.245 |
| EdgeBank [57]                | 0.399                           | 0.449                           | 0.612             | 0.617             | 0.403       | 0.413 | 0.430      | 0.456 |
| RecB <sub>default</sub> [15] | 0.106                           | 0.099                           | 0.552             | 0.561             | TOO         | OOT   | OOT        | OOT   |
| TGN [61]                     | $0.299{\scriptstyle \pm 0.012}$ | $0.324{\scriptstyle\pm0.017}$   | $0.598 \pm 0.086$ | $0.649 \pm 0.097$ | OOM         | OOM   | OOM        | OOM   |
| TGN <sub>edge-type</sub>     | $0.376 \pm 0.010$               | $0.424{\scriptstyle\pm0.013}$   | 0.767±0.005       | 0.729±0.009       | OOM         | OOM   | OOM        | OOM   |
| STHN [38]                    | <b>0.764</b> ±0.025             | $0.731{\scriptstyle \pm 0.005}$ | OOM               | OOM               | OOM         | OOM   | OOM        | OOM   |

- Models that use edge type / node type information perform well
- STHN is SOTA on software but least scalable
- Out of Memory (OOM) / Out of Time (OOT)



- Temporal Graph Benchmark
- □ Website: <u>https://tgb.complexdatalab.com/</u>
- Documentation: <u>https://docs.tgb.complexdatalab.com/</u>
- Github: <u>https://github.com/shenyangHuang/TGB</u>
- pip install py-tgb
- □ Welcome to submit to our leaderboard.
- □ Contact: shenyang.huang@mail.mcgill.ca