

Figure 1: Figure (a) describes the setting of traditional multimodal sentiment analysis, which aims to determine the speaker's sentiment based on the given multi-modal information. Figure (b) illustrates the example of our proposed task. Two comments are highlighted in the figure and hold different induced sentiments toward the related video.

Infer Induced Sentiment of Comment Response to Video: A New Task, Dataset and Baseline

Qi Jia¹, Baoyu Fan^{2,1*}, Cong Xu¹, Lu Liu¹, Liang Jin¹, Guoguang Du¹, Zhenhua Guo¹, Yaqian Zhao¹, Xuanjing Huang³, Rengang Li¹

¹IEIT SYSTEMS Co., Ltd. ²College of Computer Science, Nankai University. ³School of Computer Science, Fudan University.

	Datas	et)	(4)E						
We ha	ve deve	loped a dataset to support the MSA-CRVI task,	W						
called	Comme	ent Sentiment toward Micro Video (CSMV),	CO						
collec	ted from	n TikTok. CSMV comprises micro videos and	suc						
associ	ated cor	nments, which is annotated for opinions and	mu						
emotio	ons. The	opinion indicates the user's attitude towards the	M						
micro	video in	n comment. The emotion illustrates the emotional	Vio						
reaction	on in a c	omment evoked by the micro video.							
Task	Table 1: T	he annotation guidelines for labeling comments on micro videos.							
	positive	Hold a positive attitude towards the content of the video, agree with the information presented in the video, consider the video to be accurate, and experience a sense of	R						
Opinion		comfort induced by the video. Hold a negative attitude towards the content of the video, disagree with the information							
	negative	presented in the video, consider there to be errors in the video, and feel uncomfortable because of the video.							
	neutral	Hold no clear bias towards the content of the video; provide objective statements without any particular leaning; make comments that are associations triggered by the video rather	SF						
		than expressing a specific attitude; make comments that are not directly related to the content of the video.							
Emotion	fear	Fear, terror, apprenension evoked by the video, including reactions of being startled by watching the video, etc.							
	anger	Rage, anger, annoyance cause by the video.							
	iov	Feel happy, joyful, or serenity in heart because of video, including teasing and laughing							
	trust	at the content of the video Trust, or feel admiration, or express a convinced attitude towards the content of the video.							
	anticipation surprise	Looking forward to, sparking curiosity about, or expressing anticipation cause of the video. The content of the video is surprising, amazed, or shocked more than expected.	val						
CSM micro durati	V datase videos on of 68	et comprising 107, 267 comments and 8, 210 collected from 35 hashtags, totaling a video 3.83 hours.							
poral Repres	sentation Cons	ensus Semantic Learning Golden Feature Grounding							
Multi-scale temporal featur	e	Video Comment							
ů v		Semantic Semantic Semantic Semantic Semantic Semantic Semantic Opinion: positive							
		Attention score <i>i</i> conAtt							
		Feature	То						
-		First-order	fin						
		i Attention Attention	da						
		Consensus Transformer							
	`								
►	Comment Text fo	ature							
			*						

xperiments

e select representative sentiment analysis methods for mparison, including methods that primarily utilize textual input, ch as BERT and RoBERTa, and several typical traditional lti-modal sentiment analysis methods: TBJE, SELF-MM, SA, MMIM and CubeMLP. We use I3D, R(2+1)D and deoMAEv2 as encoder features of video.

Table 3: The experiment results of the comparison.

	Opinion			Emotion				
Models	Micro	Macro			Micro	Macro		
	F1-score	F1-score	Recall	Precision	F1-score	F1-score	Recall	Precision
BERT [12] (only text)	56.42	48.52	48.14	49.31	43.34	33.64	32.98	34.59
oBERTa 22 (only text)	56.95	49.29	48.87	49.98	47.27	37.56	36.85	38.77
TBJE [11](I3D)	65.81	59.80	59.20	60.94	55.67	48.14	48.71	46.61
SELF-MM [50](I3D)	65.77	58.56	57.30	61.20	53.92	46.44	44.64	49.87
MISA [16](I3D)	72.41	66.54	65.40	68.69	57.42	49.71	48.07	52.77
MMIM [15](I3D)	65.40	58.39	59.96	57.65	52.35	43.65	42.37	45.86
CubeMLP [39](I3D)	65.60	61.51	60.82	61.16	51.87	47.31	45.07	46.16
LF-MM [50] (R(2+1)D)	64.65	58.74	57.39	60.18	53.89	42.85	42.17	43.49
MISA $[16](R(2+1)D)$	70.65	66.53	65.55	67.50	57.42	48.48	47.94	49.01
F-MM [50] (VideoMAEv2)	67.18	61.47	63.10	59.96	53.57	45.41	44.66	46.16
SA [16](VideoMAEv2)	73.00	67.07	64.58	69.75	59.69	48.72	49.50	47.39
VC-CSA(I3D)	73.52	67.51	66.51	69.19	62.99	55.18	54.47	56.36
VC-CSA(R(2+1)D)	72.34	65.15	64.89	65.42	58.46	54.24	54.05	54.42
C-CSA(VideoMAEv2)	74.56	68.90	67.60	70.25	63.67	56.18	55.93	56.42

execute ablation studies on the three principal modules to idate the effectiveness. We adopted standard strategy instead of custom design to assess performance difference.

-	-		-	
Ablation Satting	Opinion	Opinion	Emotion	Emotion
Adiation Setting	Micro F1	Macro F1	Micro F1	Macro F1
-Only single layer	72.35	65.51	62.06	54.18
-Only last layer	69.13	63.37	59.67	51.81
-LT	72.32	66.43	62.52	54.74
-AttnS	71.93	65.23	61.22	52.82
-LT, AttnS	72.11	63.28	60.85	50.07
-Only single layer, AttnS	71.66	64.52	60.96	50.85
-Only single layer, LT	72.15	65.81	61.48	51.58
-Only last layer, AttnS	70.20	63.28	57.08	48.51
-Only last layer, LT	68.90	62.89	57.04	48.80
-Only single layer, LT, AttnS	70.70	62.33	60.25	51.56
-Only last layer, LT, AttnS	68.90	62.38	57.01	48.62
VC-CSA	73.52	67.51	62.99	55.18

address the possible limit for the generalizability of our dings, we conduct additional experiments using a smaller taset collected from YouTube, a widely used video platform.

Table 5: Evaluation VC-CSA(I3D) model on a small YouTube dataset.Ablation SettingOpinion
Micro F1Opinion
Macro F1Emotion
Micro F1Emotion
Macro F1VC-CSA(I3D)71.7370.6761.5958.89

Dataset available on https://github.com/IEIT-AGI/MSA-CRVI