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New Task1
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Figure 1: Figure (a) describes the setting of traditional multi-

modal sentiment analysis, which aims to determine the 

speaker’s sentiment based on the given multi-modal information. 

Figure (b) illustrates the example of our proposed task. Two 

comments are highlighted in the figure and hold different 

induced sentiments toward the related video. 

We introduce a new task termed Multi-modal Sentiment Analysis 

for Comment Response of Video Induced(MSA-CRVI). This 

task focuses on understanding the induced sentiment of the video, 

as conveyed through viewers’ comments. MSA-CRVI

incorporates both the textual comment and the associated video 

as inputs.

Dataset2

CSMV dataset comprising 107, 267 comments and 8, 210 

micro videos collected from 35 hashtags, totaling a video 

duration of 68.83 hours.

We have developed a dataset to support the MSA-CRVI task, 

called Comment Sentiment toward Micro Video (CSMV), 

collected from TikTok. CSMV comprises micro videos and 

associated comments, which is annotated for opinions and

emotions. The opinion indicates the user’s attitude towards the 

micro video in comment. The emotion illustrates the emotional 

reaction in a comment evoked by the micro video. 

Experiments4
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We propose a strong baseline method, named Video 

Content-aware Comment Sentiment Analysis (VC-

CSA) to address these challenges by designing three 

key modules: Multiscale Temporal Representation, 

Consensus Semantic Learning and Golden Feature 

Grounding.

 We select representative sentiment analysis methods for 

comparison, including methods that primarily utilize textual input, 

such as BERT and RoBERTa, and several typical traditional 

multi-modal sentiment analysis methods: TBJE, SELF-MM, 

MISA, MMIM and CubeMLP. We use I3D, R(2+1)D and 

VideoMAEv2 as encoder features of video.

We execute ablation studies on the three principal modules to 

validate the effectiveness. We adopted standard strategy instead of 

our custom design to assess performance difference. 

To address the possible limit for the generalizability of our 

findings, we conduct additional experiments using a smaller 

dataset collected from YouTube, a widely used video platform. 

Dataset available on https://github.com/IEIT-AGI/MSA-CRVI
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