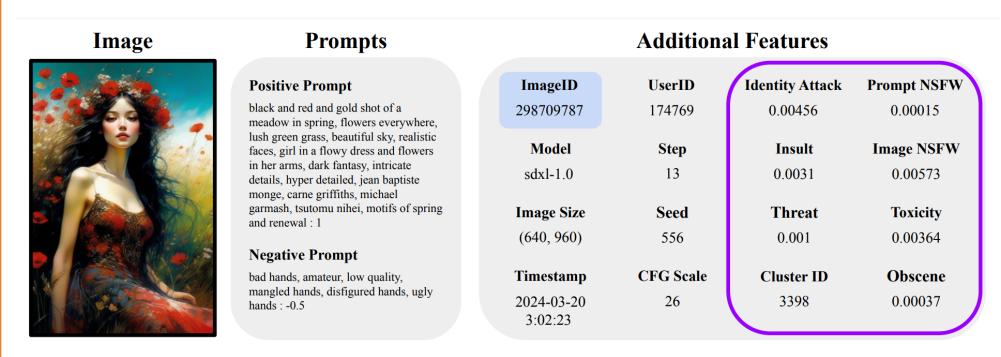
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models

VIRGINIA TECH

Matthew Zheng*, Enis Simsar*, Hidir Yesiltepe, Federico Tombari, Joel Simon, Pinar Yanardag

ETH zürich


Artbreeder

Introduction

Recent Al-generated datasets contain limited stylistic diversity and skew toward user groups, reflecting constrained environments and time frames

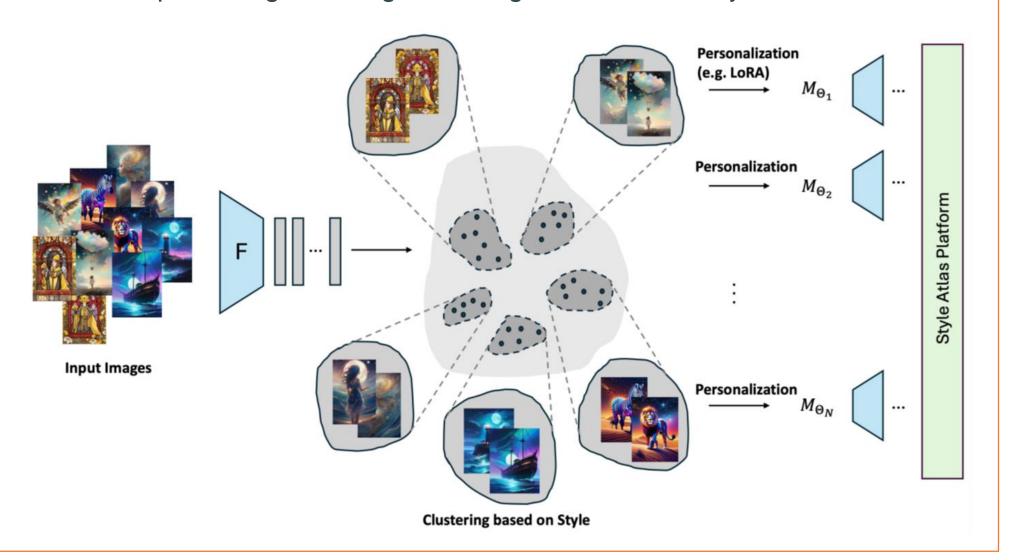
- We introduce a novel extensive AI-generated dataset Stylebreeder
- We identify unique image styles in an unsupervised manner
- We showcase a recommendation system that aligns style suggestions with individual preferences
- We provide public access to download pre-trained style LoRAs for personalized content generation through our web platform Style Atlas

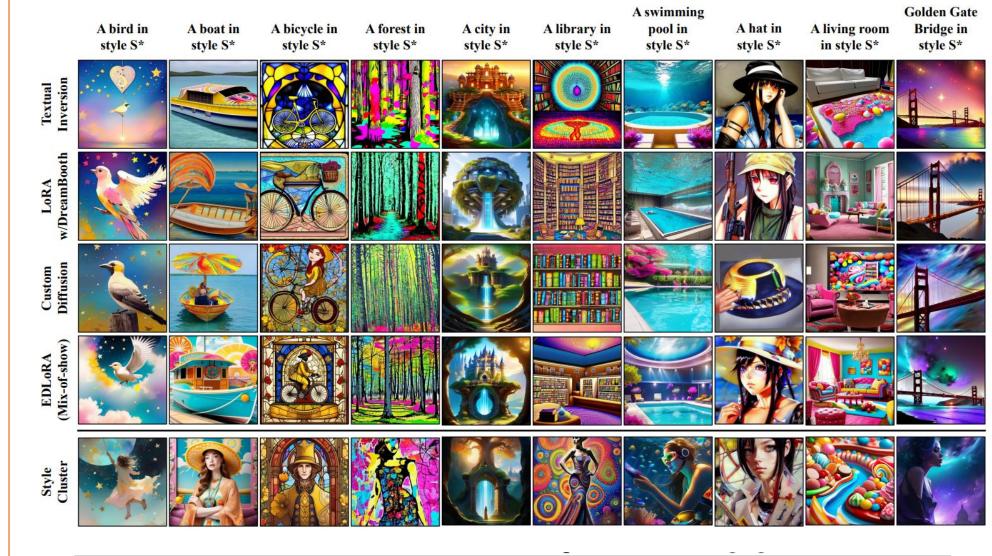
Stylebreeder Dataset

- 6.8 million images generated by 95,000 unique users scraped from the Artbreeder website from July 2022 to May 2024
- It includes detailed metadata such as Positive Prompt, Negative Prompt, UserID, Timestamp, and Image Size
- We supply model-related hyperparameters, including Model Type, Seed,
 Step, and CFG Scale
- Further metadata like Cluster ID, along with scores for Prompt NSFW, Image NSFW, and Toxicity computed using state-of-the-art models

Midjourney Kaggle Midj TWIGMA Twit	Discord 14,000,000 250,000 800,000 oreeder 6,818,217	Jun 2022-Jul 20 Jan 2020-Mar 2	023 ×	X X √	
LAION	oreeder 6,818,217	Jul 2022-May 2	024 🗸	✓	
ArtBench	enelle.				
ArtBench		Toxicity			
		Severe	Toxicity		
DiffusionDB		Obscer	ne Transport		
	allih	Identity	/ Attack	In	
		Insult	Illii	·	
TWIGMA		Threat			
STYLEBREEDER		NSFW	. Ideallia		
10^{-7} 10^{-5}	10^{-3}	10^{-1} 10	0^{-7} 10^{-5} 10^{-3}	10^{-1}	
(a) NSFW so	cores for images	(b	(b) NSFW and other scores for text prompts		

Discovering Diverse Artistic Styles


- We convert the images into a set of style embeddings using a state-ofthe-art feature extractor, CSD
- These embeddings are then clustered into groups using the K-Means++ algorithm utilizing cosine similarity to ensure cohesion within clusters


(a) User-generated images from 10 random clusters

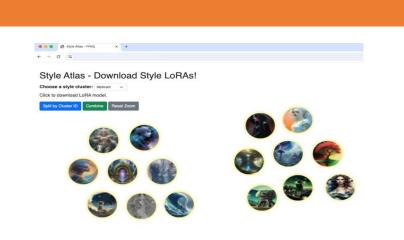
We use these clusters of images of discovered styles to fine-tune LoRA models capable of generating new images with similar styles

Experiments

$ \begin{array}{ c c c c c c c c c } \hline & Textual Inversion & LoRA w/DreamBooth & EDLoRA & Custom-Diffusion \\ \hline \hline 7 & Avg. & 0.6869 \pm 0.10 & 0.6299 \pm 0.11 & 0.6957 \pm 0.11 & 0.5917 \pm 0.12 \\ \hline \hline 8 & Min. & 0.6166 \pm 0.10 & 0.5654 \pm 0.11 & 0.6214 \pm 0.11 & 0.5324 \pm 0.11 \\ \hline 5 & Max. & 0.7428 \pm 0.10 & 0.6831 \pm 0.11 & 0.7521 \pm 0.12 & 0.6440 \pm 0.12 \\ \hline \hline \hline 6 & Min. & 0.1857 \pm 0.02 & 0.1896 \pm 0.02 & 0.1822 \pm 0.01 & 0.1809 \pm 0.02 \\ \hline \hline 6 & Min. & 0.1555 \pm 0.02 & 0.1573 \pm 0.02 & 0.1527 \pm 0.01 & 0.1486 \pm 0.02 \\ \hline 5 & Max. & 0.2392 \pm 0.03 & 0.2663 \pm 0.03 & 0.2389 \pm 0.03 & 0.2585 \pm 0.03 \\ \hline \hline \hline 6 & Avg. & 0.3801 \pm 0.15 & 0.2668 \pm 0.17 & 0.4125 \pm 0.18 & 0.2546 \pm 0.17 \\ \hline 6 & Min. & 0.2581 \pm 0.13 & 0.1682 \pm 0.14 & 0.2790 \pm 0.15 & 0.1634 \pm 0.14 \\ \hline 6 & Max. & 0.4838 \pm 0.17 & 0.3585 \pm 0.19 & 0.5246 \pm 0.19 & 0.3402 \pm 0.19 \\ \hline \hline \end{array}$				_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Textual Inversion	LoRA w/DreamBooth	EDLoRA	Custom-Diffusion
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Min.	0.6166 ± 0.10	0.5654 ± 0.11	0.6214 ± 0.11	0.5324 ± 0.11
$\breve{2}$ Min. 0.2581 ± 0.13 0.1682 ± 0.14 0.2790 ± 0.15 0.1634 ± 0.14	CLIP-T	Min.	0.1555 ± 0.02	0.1573 ± 0.02	0.1527 ± 0.01	0.1486 ± 0.02
	DINO	Min.	0.2581 ± 0.13	0.1682 ± 0.14	0.2790 ± 0.15	0.1634 ± 0.14

Style-based Recommendation

- We use a matrix-factorization approach, which involves a set of items where users rate items they have interacted with
- Users are the creators who generate images, and items are the clusters in which generated images are assigned



Style Atlas

We provide 100 style LoRAs on our Style
Atlas platform so users can browse and
download LoRA models for appealing styles

