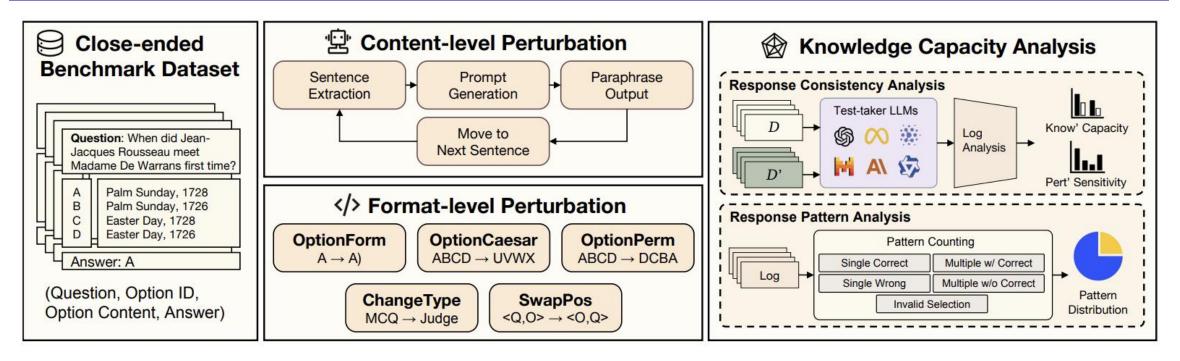


PertEval: Unveiling Real Knowledge Capacity of LLMs via Knowledge-Invariant Perturbations

Jiatong Li¹, Renjun Hu², Kunzhe Huang², Yan Zhuang¹, Qi Liu¹, Mengxiao Zhu¹, Xing Shi², Wei Lin²
¹University of S&T of China, ²Alibaba Cloud Computing



- **1. Introduction**
- 2. Architecture of PertEval
- **3. Knowledge Invariance Verification**
- 4. LLMs' Knowledge Capacity Evaluation
- 5. Empowering LLMs' Capacity Using PertEval
- 6. Conclusion

1.1. Research Overview

- **Research Task:** <u>Multiple Choice Question</u>-based LLM Knowledge Eval
- Challenge: Data Contamination; Limited Test Scenarios → Untruthful Eval
- Solution: A Knowledge-invariant Perturbation-based Eval Toolkit

- We propose **PertEval** to unveil the real knowledge capacity of LLMs, marking a significant step towards more **trustworthy** LLM evaluation.
- We re-evaluate six LLMs using PertEval. Evaluation results reveal **overestimated** performance of LLMs and their **uncertainty** to specious knowledge.
- We demonstrate the **vulnerability** of LLMs to different perturbation strategies in PertEval and provide insights for the **refinement** of knowledge capacity.

2. Architecture of PertEval

Table 7: An example of knowledge-invariant paraphrasing of a test question. Texts surrounded by angular brackets are invisible in question prompts input to the LLM test-taker.						
Original Knowledge-invariant Paraphrasing						
<# Context & Condition> Let $T : R^2 \to R^2$ be the linear transformation that maps the point (1, 2) to (2, 3) and the point (-1, 2) to (2, -3). <# Goal> Then T maps the point (2, 1) to	<# Context & Condition> Let T be the linear transformation from R^2 to R^2 such that T maps (1, 2) to (2, 3) and (-1, 2) to (2, -3). <# Goal> Then, the linear transformation T will map the point (2, 1) to					

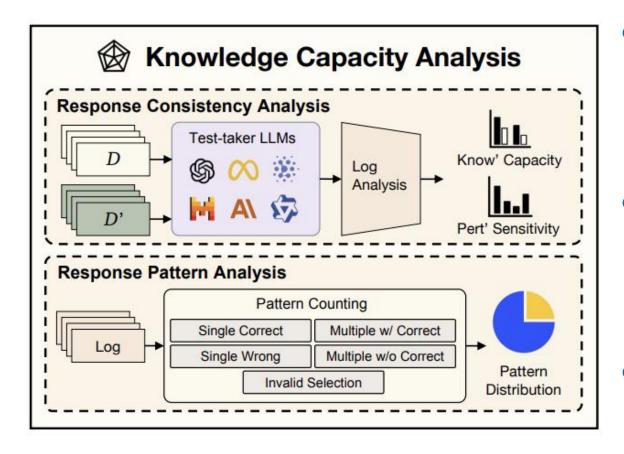
Table 8: Examples of format-level knowledge-invariant perturbations. Texts surrounded by angular brackets are invisible in question prompts input to the LLM test-taker.

Perturbation	Original case	Perturbed case
OptionPerm	<# Options> A x = 1; B x = 2; C x = 3; D x = 4	<pre><# Options> A x = 4; B x = 3; C x = 2; D x = 1</pre>
OptionForm	<# Options> A x = 1; B x = 2; C x = 3; D x = 4	<pre><# Options> A) $x = 1$; B) $x = 2$; C) $x = 3$; D) $x = 4$</pre>
OptionCaesar	<# Options> A x = 1; B x = 2; C x = 3; D x = 4	<pre><# Options> U $x = 1$; V $x = 2$; W $x = 3$; X $x = 4$</pre>
ChangeType	<pre><# Prompt> Please select correct op- tion(s) given the following question:</pre>	<pre><# Prompt> Please judge whether each of the options is correct given the following question:</pre>
SwapPos	<pre><# Prompt> Please select correct op- tion(s) given the following question: <# Question> The solution of the equa- tion $2x + 1 = 3$ is <# Options> A $x = 1$; B $x = 2$; C x = 3; D $x = 4$</pre>	<pre><# Prompt> Please select correct op- tion(s) given the following question: <# Options> A $x = 1$; B $x = 2$; C x = 3; D <math>x = 4 <# Question> The solution of the equa- tion $2x + 1 = 3$ is</math></pre>

Examples of knowledge-invariant perturbation.

Content-level Perturbation

• Knowledge-invariant paraphrasing


Format-level Perturbation

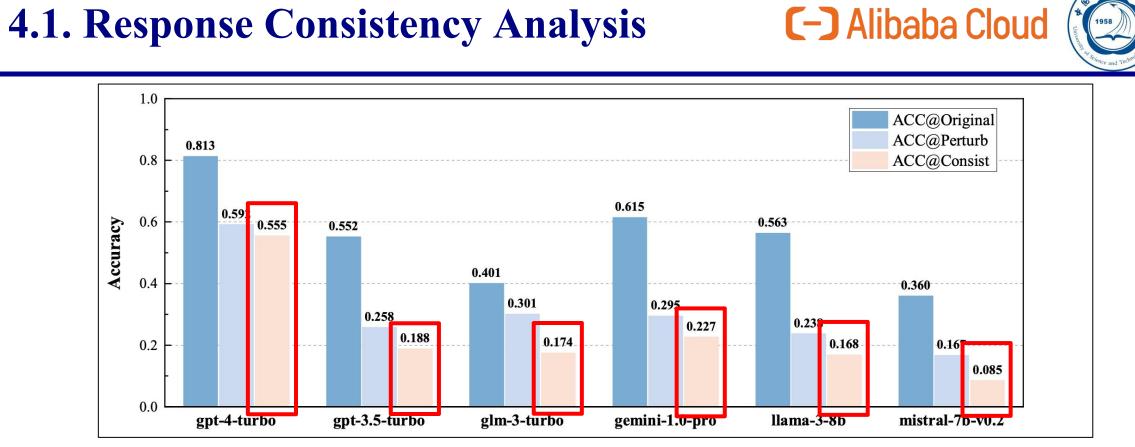
• Five different strategies

- Knowledge Capacity Analysis
 - Response Consistency Analysis
 - Response Pattern Analysis

- Content-level Perturbation
 - Knowledge-invariant paraphrasing

- Format-level Perturbation
 - Five different strategies

- Knowledge Capacity Analysis
 - Response Consistency Analysis
 - Response Pattern Analysis


Table 2: Knowledge invariance scores ↑ rated by human scorers. Four independent scores from different human scorer groups are presented in ascending order for each cell.

Method	C-Math	W-History	P-Psychology	P-Medicine	
PromptAttack	2.3/2.4/3.0/3.9	2.2/2.2/2.3/2.8	1.3/2.4/2.8/2.8	1.6/2.5/3.5/3.6	
PertEval (ours)	3.6/3.8/3.9/3.9	3.7/4.1/4.1/4.3	4.3/4.4/4.5/4.7	4.2/4.3/4.4/4.6	

Table 3: **Knowledge invariance scores** rated by superior LLMs. Values (a/b/c) in each cell denotes the average knowledge invariance score rated by gpt-4-turbo, claude-3.5-sonnet, and llama-3.1-405b, respectively.

Method	C-Math	W-History	P-Psychology	P-Medicine
PromptAttack	3.2/3.6/3.6	3.2/3.3/3.7	3.9/3.9/3.7	4.1/4.3/4.2
PertEval (ours)	3.8/3.9/4.0	4.0/4.2/4.0	4.0/4.4/4.0	4.1/4.4/4.0

- Verification Method: Human-based & LLM-based scoring (min: 1; max: 5)
- **Experiment Dataset:** A subset of MMLU covering all 4 major topics
- Findings: PertEval obtains high KI scores (\geq 3.6 for C-Math; mostly \geq 4.0 for others)
- **Conclusion:** PertEval can indeed generate knowledge-invariant perturbed datasets

- Evaluation Metric: ACC@Consist (Ratio of questions that are correctly answered on both the original & perturbed datasets)
- Finding: Overestimated knowledge capacity on the origninal dataset

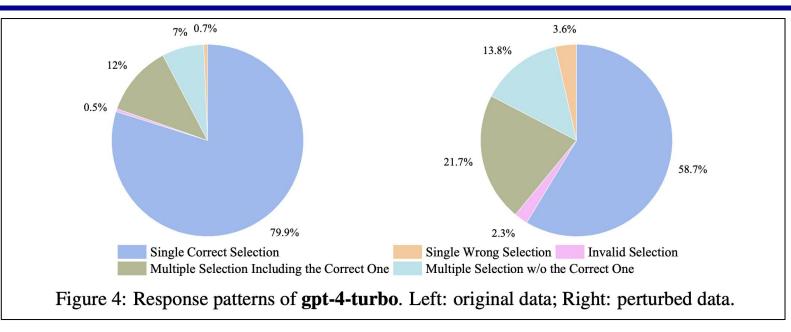


Table 5: Macro PDR \uparrow and hypothesis test results of Micro PDR of LLMs w.r.t. perturbation.								
Model\Strategy	KnInvPara	OptionPerm	OptionForm	OptionCaesar	ChangeType	SwapPos	AVG	
gpt-4-turbo	-0.0660**	-0.0208**	-0.0136	-0.0294**	-0.0210	-0.1117**	-0.0438	
gpt-3.5-turbo	-0.0275**	-0.0042	-0.1767**	-0.0396**	-0.1736**	-0.1943**	-0.1027	
gemini-1.0-pro	-0.0558**	+0.0121	+0.0125	+0.0030	-0.1310**	-0.1532**	-0.0521	
glm-3-turbo	-0.0370**	-0.0190	-0.1397**	-0.0118	+0.0522	-0.2142**	-0.0616	
mistral-7b-v0.2	-0.0264	-0.0200	-0.2789**	+0.0793	-0.0844**	-0.1275**	-0.0763	
llama-3-8b	-0.0336**	-0.0091	-0.0939**	-0.0368**	-0.2920**	-0.1814**	-0.1078	
AVG	-0.0411	-0.0102	-0.1151	-0.0059	-0.1083	-0.1637		
**: The <i>Micro</i> PDR is significantly negative in the Wilcoxon signed-rank test ($\alpha = 0.01$).								

- Evaluation Metric: Performance Drop Rate (PDR); Recall of Performance (ROP)
- **Finding**: 1. The sensitivity of LLMs to perturbations differs a lot; 2. The effect of perturbations differ a lot; 3. All LLMs are sensitive to SwapPos, the global order change.

4.2. Response Pattern Analysis

- Evaluation Method: <u>Count & Visualize & Compare</u> response patterns on the original & perturbed datasets.
- **Finding**: For most LLMs, the ratio of **multiple selection including the correct one** significantly increases on the perturbed dataset, indicating their uncertainty to incorrect knowledge.

Strategy	fine-tune	C-Math	W-History	P-Psychology	P-Medicine	AVG _{macro}	AVG _{micro}
ChangeType	None F(CT) F(CT+KP)	-0.2300 -0.0700 -0.0500	-0.3418 +0.0759 +0.0422	- 0.2467 +0.0196 +0.0082	-0.3493 +0.0257 +0.0074	+0.0128	
SwapPos	None F(SP) F(SP+KP)	-0.0700 +0.0100 -0.0300	-0.2110 -0.0675 -0.1350	-0.1944 -0.1095 -0.1029	-0.2500 -0.0882 -0.1176	-0.0638	-0.2867 +0.0246 -0.1065
KnInvPara	None F(KP) F(CT+KP) F(SP+KP)	+0.0200 -0.0400 -0.0300	-0.0802 -0.0253 -0.0549 -0.0675	-0.0163 -0.0212 -0.0343 -0.0212	-0.0478 0.0000 -0.0368 -0.0184		-0.0328 -0.0188 -0.0393 -0.0303

- Method: Supervised fine-tuning llama-3-8b-instruct using perturbed W-History & P-Medicine
- Finding:
 - Stimulation Phenomenon: For format-level perturbations, only fine-tuning the model with a subset of perturbed data can significantly improve its overall performance stability in all perturbed data.

Strategy	fine-tune	C-Math	W-History	P-Psychology	P-Medicine	AVG _{macro}	AVG _{micro}
	None	-0.2300	-0.3418	-0.2467	-0.3493	-0.2920	-0.1998
ChangeType	F(CT)	-0.0700	+0.0759	+0.0196	+0.0257	+0.0128	-0.0868
• • • •	F(CT+KP)	-0.0500	+0.0422	+0.0082	+0.0074	+0.0020	+0.0019
	None	-0.0700	-0.2110	-0.1944	-0.2500	-0.1814	-0.2867
SwapPos	F(SP)	+0.0100	-0.0675	-0.1095	-0.0882	-0.0638	+0.0246
	F(SP+KP)	-0.0300	-0.1350	-0.1029	-0.1176	-0.0964	-0.1065
	, ,						·
KnInvPara	None	+0.0200	-0.0802	-0.0163	-0.0478	-0.0311	-0.0328
	F(KP)	-0.0400	-0.0253	-0.0212	0.0000	-0.0216	-0.0188
	F(CT+KP)	-0.0400	-0.0549	-0.0343	-0.0368	-0.0415	-0.0393
	F(SP+KP)	-0.0300	-0.0675	-0.0212	-0.0184	-0.0343	-0.0303

- Method: Supervised fine-tuning llama-3-8b-instruct using perturbed W-History & P-Medicine
- Finding:
 - Lack of Transferability: For content-level perturbations, SFT on a subset of the perturbed datasets cannot significantly improve its performance on other perturbed subsets (subjects).

- One trustworthy evaluation toolkit PertEval
- Two response analysis methods consistency & pattern analyses
- Three evaluation metrics ACC@Consist, PDR, ROP
- Four significant experiments
- Five format-level perturbations
- Six perturbations in total for PertEval

PertEval: Unveiling Real Knowledge Capacity of LLMs via Knowledge-Invariant Perturbations

Arxiv: https://arxiv.org/abs/2405.19740 Code: https://github.com/aigc-apps/PertEval

Thank you!