
A Practitioner’s Guide to 
Continual Multimodal Pretraining



Motivation: Foundation models are awesome, but can get outdated!

CLIP, OpenCLIP,
CyCLIP…

Datasets

Image Data
lorem lorem

Descriptors
…

…

Diverse Transfer
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Large-scale Model Training on expansive data

Deploy across diverse tasks
● Zero-Shot Image Classification
● Any-Shot Retrieval
● Accelerate Cross-Modal Applications
● Guidance for Text-to-Image
● Transferable Insights
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But:
● Recency upper-bounded by dataset
● New domains and semantic concepts

Visual/Semantic Understanding needs to adapt!

Can’t retrain on bigger and bigger datasets!

How to continual pretrain across long update 
horizons?
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Larger models: 
Easier to incorporate new knowledge without 

overwriting existing knowledge!

Higher compute allocation / update: Much 
more favourable scaling behaviour for model 

merging techniques!
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● Replaying from pretraining data helps, but much less important than replay on new streamed data.
● How you replay from pretraining impacts trajectory.

Overview
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