

Benchmarking LLMs via Uncertainty Quantification

Fanghua Ye^{1,2}, Mingming Yang¹, Jianhui Pang^{1,3}, Longyue Wang¹, Derek F. Wong³, Emine Yilmaz², Shuming Shi¹, Zhaopeng Tu¹

1. Tencent AI Lab 2. University College London 3. University of Macau

Background

LLMs are able to show remarkable performance across various tasks

Comprehensively evaluating LLMs becomes a huge challenge

Motivation

Existing evaluation overlooks the uncertainty of LLMs
 LLMs should be aware of what they are unsure about

Two LLMs can demonstrate the same accuracy but significantly different **uncertainties**

Method | Overview

Incorporating uncertainty quantification into the evaluation process

Method | Data Preparation

♦ We consider five typical NLP tasks, each with 10,000 instances

Question Answering (QA)	Reading Comprehension (RC)	Commonsense Inference (CI)	Dialogue Response Selection (DRS)	Document Summarization (DS)
 Answer a given question Built upon MMLU 	 Answer a given question based on a provided passage Built upon CosmosQA 	 Pick up the best ending based on commonsense reasoning Built upon HellaSwag 	 Select the most suitable response Built upon HaluDial 	 Summarize long text into a shorter one Built upon HaluSum

Method | Data Preparation

We formulate each task as a multiple-choice question answering task

Method | Prompting Strategies

We adopt three prompting methods to reduce the influence of LLMs' sensitivity to different prompts

Method | Uncertainty Quantification

What kind of uncertainty quantification methods are friendly to LLMs?

Ease of implementation	High efficiency	High Interpretability
Data distribution-free	Model-agnostic	No model modifications

A statistically rigorous estimation of uncertainty rather than a heuristic approximation

Take accuracy into account

Method | Uncertainty Quantification

Conformal prediction for uncertainty quantification

 $p(Y_{test} \in \mathcal{C}(X_{test})) \ge 1 - \alpha$

Method | Uncertainty Quantification

Conformal prediction for uncertainty quantification

Step 1: Compute uncertainty scores on calibration data

Step 2: Compute the threshold

Step 3: Construct prediction sets for test instances

Benchmarking Results

Higher accuracy does not necessarily indicate lower uncertainty
 For each task, Acc and SS lead to different rankings of LLMs

Accuracy

Uncertainty

LLMs	Acc (%) ↑				$\mathbf{SS}\downarrow$							
	QA	RC	CI	DRS	DS	Avg.	QA	RC	CI	DRS	DS	Avg.
Qwen-14B	64.25(1)	91.52 ₍₁₎	91.00 ₍₁₎	73.90(1)	49.33 (4)	74.00(1)	2.80(2)	1.74(1)	2.02(2)	1.94(1)	2.37(3)	2.17(1)
Yi-6B	57.57(4)	85.99 ₍₂₎	76.50(2)	58.72(4)	66.06 (1)	68.97 ₍₂₎	3.20(5)	1.92(4)	1.88(1)	2.85(6)	1.96(1)	2.36(2)
Gemma-7B	62.24(2)	85.29 ₍₃₎	73.58(3)	$66.79_{(2)}$	40.80(7)	65.74 (3)	2.72(1)	1.88(3)	2.04(3)	2.14(2)	3.11(7)	2.38(3)
Mistral-7B	60.44 (3)	81.94(5)	62.93(5)	53.21(5)	62.16(2)	64.14 (4)	2.80(2)	1.75(2)	2.48(5)	2.71(5)	2.40(4)	2.43(4)
Llama-2-13B	52.52(6)	77.23(6)	59.66(6)	52.65(6)	60.05 ₍₃₎	60.42(5)	3.06(4)	2.24(7)	2.72(6)	2.55(4)	2.24(2)	2.56(5)
Qwen-7B	55.21(5)	83.89 (4)	63.70 ₍₄₎	$64.04_{(3)}$	32.53(9)	59.87 (6)	3.26(7)	2.15(5)	2.28(4)	2.51(3)	2.92(5)	2.63(6)
InternLM-7B	48.37(7)	73.86(7)	46.21(7)	43.72(7)	34.38(8)	49.31(7)	3.49(9)	2.19(6)	3.28(9)	3.63(10)	4.47(11)	3.41(9)
Llama-2-7B	45.60(9)	65.79 ₍₈₎	43.05(8)	32.61(9)	45.60(5)	46.53(8)	3.20(5)	2.39(8)	3.27(8)	3.26(7)	3.30(8)	3.09(7)
DeepSeek-7B	45.65(8)	65.39(9)	42.66(9)	33.50(8)	42.15(6)	45.87(9)	3.34(8)	2.77(9)	3.06(7)	3.40(8)	3.08(6)	3.13(8)
MPT-7B	29.49(10)	31.69(10)	25.50(10)	24.38(11)	24.86(10)	27.18(10)	3.53(10)	3.46(10)	3.60(10)	3.59(9)	3.66(9)	3.57(10)
Falcon-7B	23.75(11)	24.98(11)	24.91(11)	25.86(10)	24.69(11)	24.84(11)	3.90(11)	3.60(11)	3.66(11)	3.64(11)	3.92(10)	3.75(11)

Benchmarking Results

Effects of model scale

□ Larger-scale LLMs may display greater uncertainty compared to smaller counterparts

Benchmarking Results

Effects of instruction finetuning

□ Instruction-finetuning tends to increase the uncertainty of LLMs

Benchmarking LLMs via Uncertainty Quantification

E Paper, Datasets

https://github.com/smartyfh/LLM-Uncertainty-Bench

Thank You! Q&A