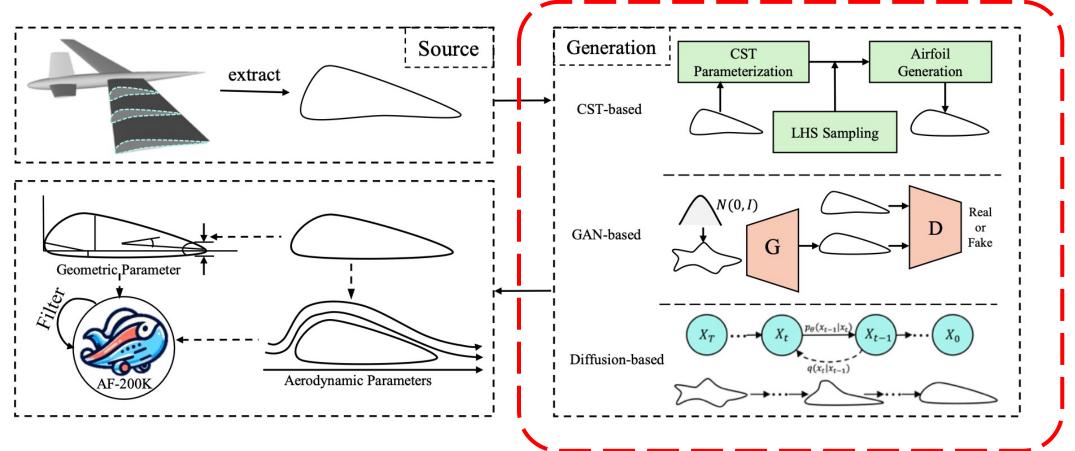


A Large-scale Benchmark for Airfoil Design

Jian Liu^{1,2}, **Jianyu Wu**^{2,*}, Hairun Xie³, Guoqing Zhang^{1,2}, Jing Wang³, Wei Liu³, Ouyang Wanli², Junjun Jiang¹, Xianming Liu¹, Shixiang Tang², Miao Zhang³

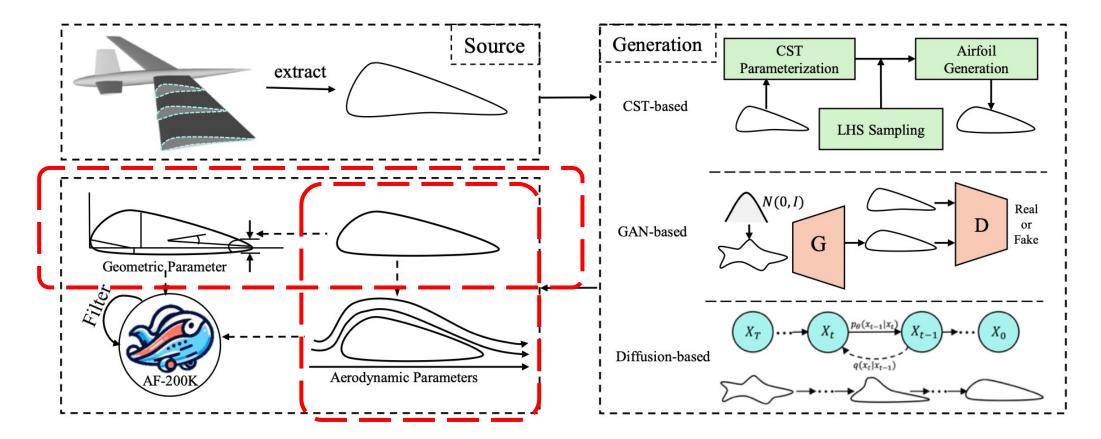
¹Harbin Institute of Technology, ²Shanghai AI Laboratory ³Shanghai Aircraft Design and Research Institute ***Presenting**

*Presenting


> The existing airfoil datasets are relatively **small-scale**.

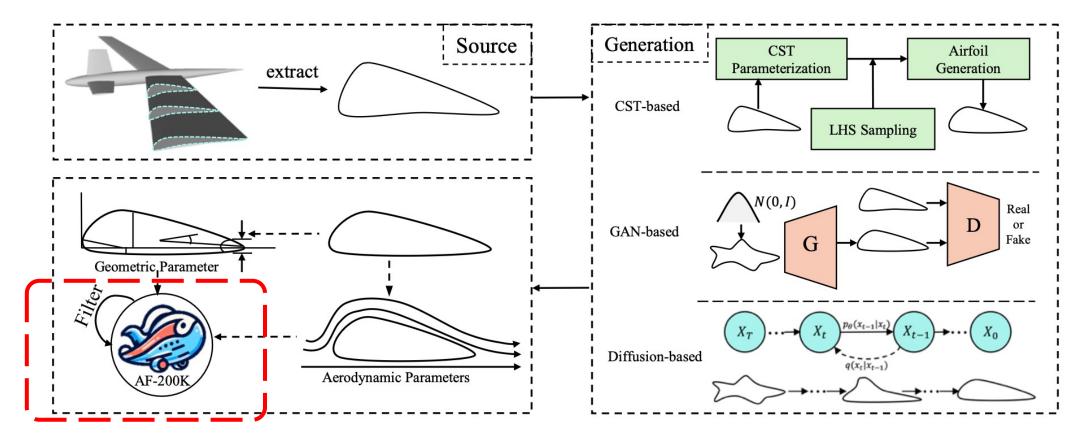
- ➤ The current datasets typically provide only a single condition.
 > The current methods do not support progressive aditing
- The current methods do not support progressive editing

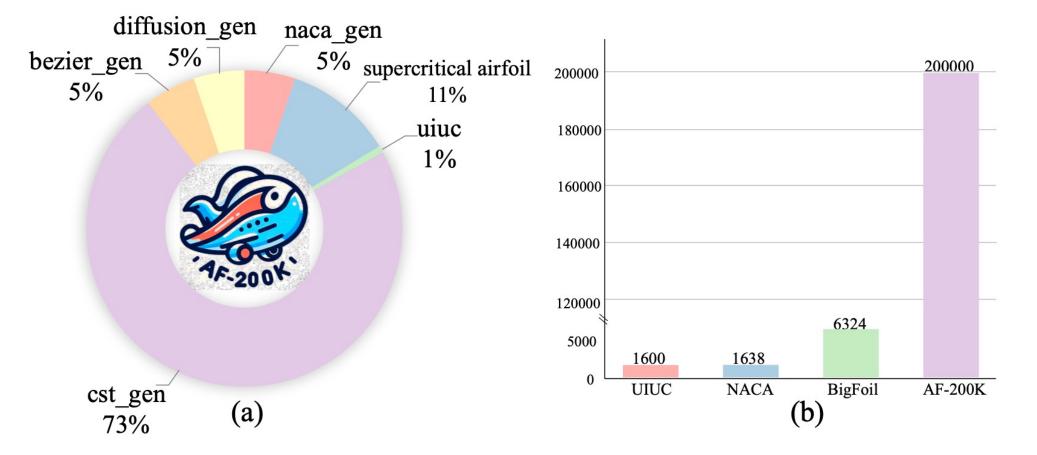
existing designs.


➤Lack of a comprehensive and clear codebase to compare and analyze different approaches.

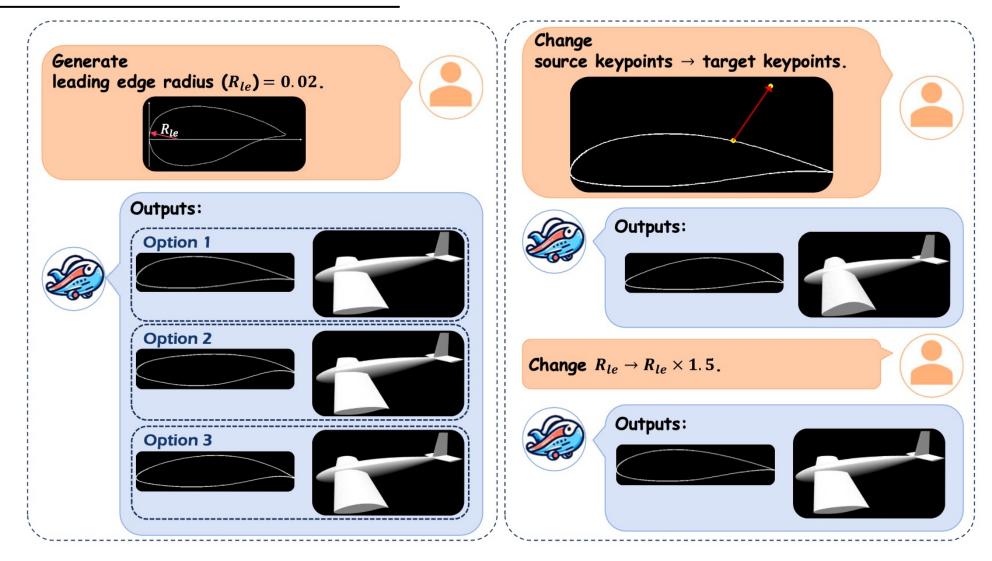
Automatic Data Engine

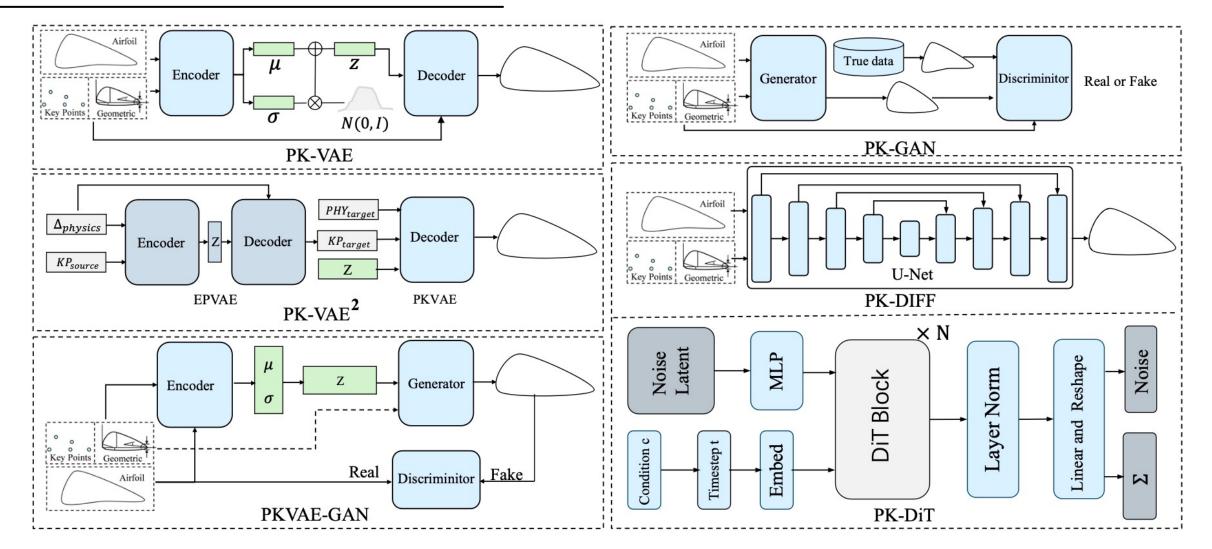
- 1. Generation stage:
 - CST-assisted Generation
 - Unconditional Airfoil Generation


Automatic Data Engine


2. Annotation stage:

- Aerodynamic
- Geometric


Automatic Data Engine


3. Filtering stage

Dataset presentation

Two Airfoil Inverse Design Tasks

The baseline methods for benchmarking the dataset

Comprehensive metrics:

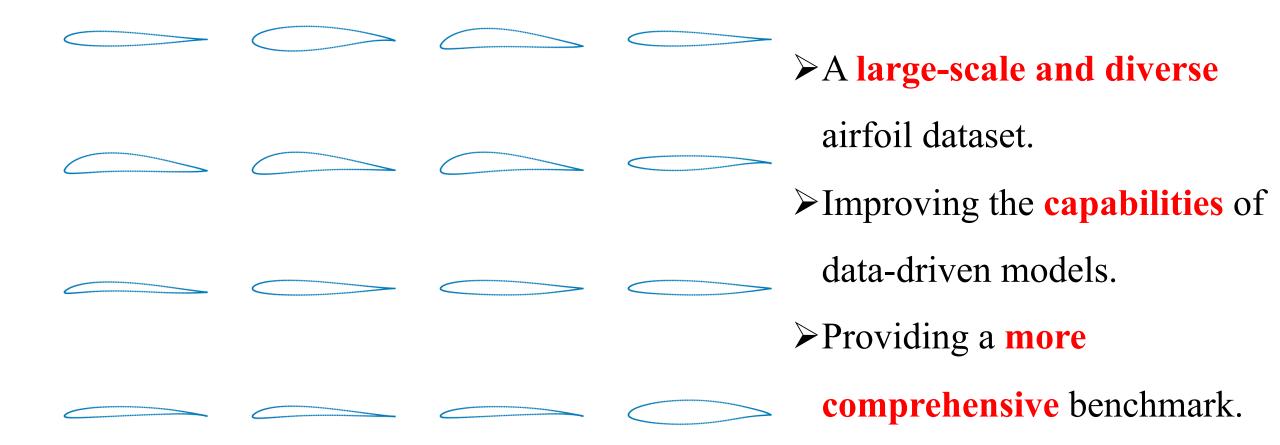
• Label error:
$$\sigma_i = |\hat{p}_i - p_i|, i = 1, 2, ..., 11$$

• Diversity:
$$\mathcal{D} = \frac{1}{n} \sum_{i=1}^{n} \log det(\mathcal{L}_{S_i}),$$

• Smoothness: $\mathcal{M} = \sum_{i=1}^{N} \text{Distance}_{Pn \perp |P_{n-1}P_{n+1}|},$
• Success rate: $\mathcal{R} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(\frac{\sum_{j=1}^{M} C_j}{M} > 60\%), j = 1, ..., M,$

Method	Dataset		Label error $\downarrow \times 0.01$												$\mathcal{M}\downarrow imes 0.01$
		σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	$\bar{\sigma}$	$\mathcal{D}\uparrow$	
CVAE [16]	AF-200K	7.29	5.25	3.52	1590	9.9	9.55	2900	1.91	1.53	4.6	10.4	413.1	-155.4	7.09
CGAN [15]	AF-200K	10.7	8.50	5.44	2320	14.3	13.7	5960	2.53	2.23	5.3	12.9	759.6	-120.5	7.31
PK-VAE	AF-200K	6.30	4.79	3.13	862	6.6	6.41	1710	1.35	0.93	3.3	7.8	237.5	-150.1	5.93
PK-GAN	AF-200K	8.18	6.30	4.70	2103	12.0	11.7	3247	2.25	1.96	5.0	12.7	492.3	-112.3	3.98
PKVAE-GAN	AF-200K	5.68	3.17	3.10	565	4.6	4.35	1200	0.91	0.51	2.8	6.3	163.3	-129.6	2.89
PK-DIFF	AF-200K	4.61	3.46	2.15	277	2.2	1.93	1030	0.70	0.11	2.4	3.1	120.6	-101.3	1.52
PK-DIT	UIUC	6.38	5.14	3.36	1183	8.7	8.49	2570	1.69	1.19	3.6	9.8	345.6	-141.7	6.03
PK-DIT	Super	5.20	3.50	2.40	301	2.9	3.32	1050	0.83	0.26	2.7	3.3	125.0	-123.4	1.97
PK-DIT	AF-200K	1.12	3.23	1.54	105	1.3	1.15	979	0.05	0.05	2.3	2.4	99.7	-93.2	1.04

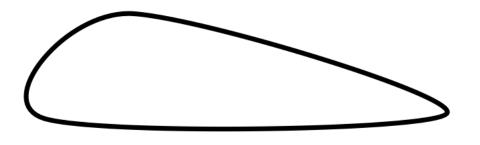
Performance across different datasets

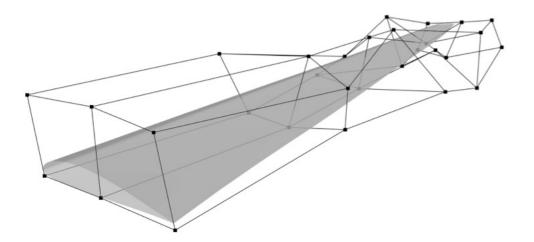

Method	Task	Label error $\downarrow \times 0.01$													$\mathcal{M}\downarrow imes 0.01$
		σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	$\bar{\sigma}$		
PK-VAE	EK	9.3	8.33	5.27	2082	12.9	11.1	4620	2.51	2.04	5.1	11.8	615.5	-143.4	7.21
PK-VAE	EP	8.9	6.38	4.94	1780	10.9	9.4	4570	2.05	1.98	4.9	10.3	582.6	-150.8	7.19
PK-VAE ²	EK	7.1	5.71	4.05	1430	8.0	8.1	3780	1.91	1.52	3.6	8.7	478.1	-133.4	6.20
$PK-VAE^2$	EP	6.5	5.22	3.57	1010	7.8	7.3	2010	1.52	1.03	3.4	7.9	278.5	-135.6	6.36

Performance across different design tasks

Method	Label Error $(\times 0.01) \downarrow$												\mathcal{D}^{+}	$\mathcal{M}\downarrow imes 0.01$
	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	$\bar{\sigma}$		
NACA-GEN	6.26	5.10	3.29	961	7.69	7.46	2130	1.08	1.038	3.4	8.0	284.9	-136.4	5.09
CST-GEN	5.82	4.09	2.80	572	4.61	4.36	1390	0.94	0.542	3.1	5.9	181.3	-101.5	2.31
BézierGAN-GEN	5.96	4.96	3.07	839	5.64	6.38	1900	0.98	0.817	3.1	7.4	252.5	-125.3	1.21
Diffusion-GEN	5.44	3.83	2.58	353	3.09	3.33	1180	0.89	0.293	2.9	4.2	141.8	-111.9	2.05

Performance across different generated data


Visualization



Diverse airfoils generated by PK-DIT

Limitation & Future works

- Dealing with multiple conditions
- Optimization techniques integration
- Dimension extension

2D airfoil inverse design

3D airfoil inverse design

Deep Generative Model for Efficient 3D Airfoil Parameterization and Generation Wei Chen and Arun Ramamurthy Arxiv, 2021

Github Zhihu Arxiv

Thank you!