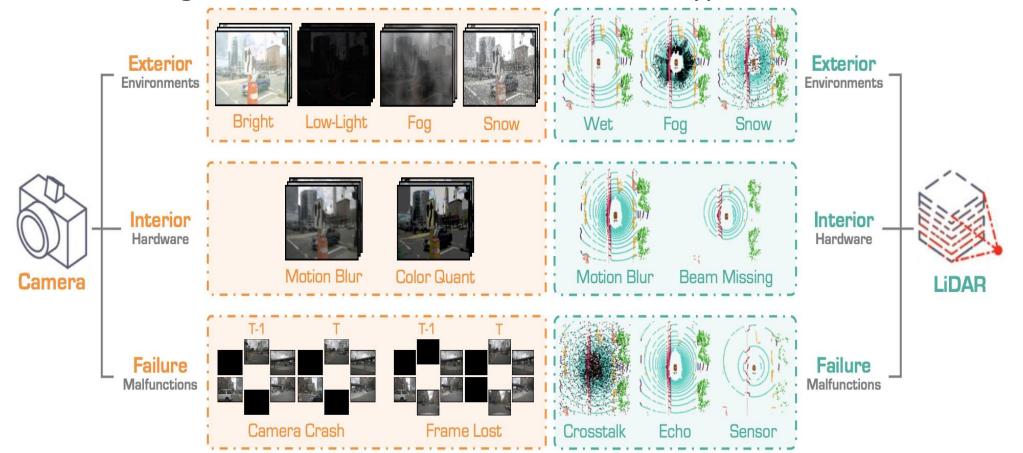

# Is Your HD Map Constructor Reliable under Sensor Corruptions?

# Motivation & Contribution

# TL;DR


- We introduce MapBench, making the first attempt to comprehensively benchmark and evaluate the robustness of HD map construction models against various sensor corruptions.
- We extensively benchmark a total of 31 state-of-the-art HD map constructors and their variants under three configurations: camera-only, LiDAR-only, and camera-LiDAR fusion. This involves studying their robustness to 8 types of camera corruptions, 8 types of LiDAR corruptions, and 13 types of camera-LiDAR corruption combinations for each configuration.



We identify effective strategies for enhancing robustness, including innovative approaches that leverage advanced data augmentation and architectural techniques. Our findings reveal strategies that significantly improve performance and robustness, underscoring the importance of tailored solutions to address specific challenges in HD map construction.

# MapBench: Benchmarking HD Map Construction Robustness

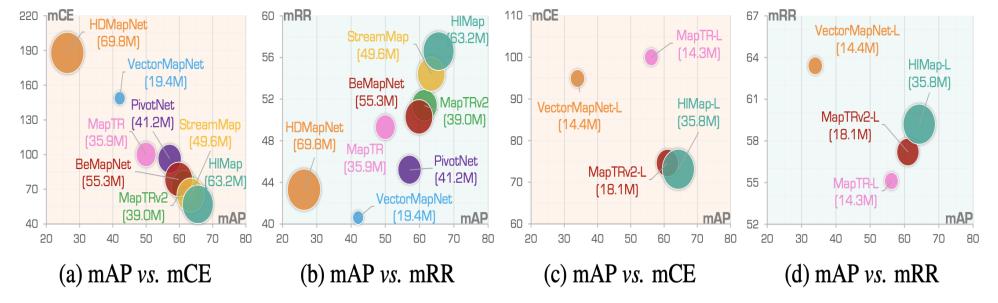
Definitions of the Camera and LiDAR sensor corruptions in MapBench. Our benchmark encompasses a total of 16 corruption types for HD map construction, which can be categorized into exterior, interior, and sensor failure scenarios. Besides, we define 13 multi-sensor corruptions by combining the camera and LiDAR sensor failure types.



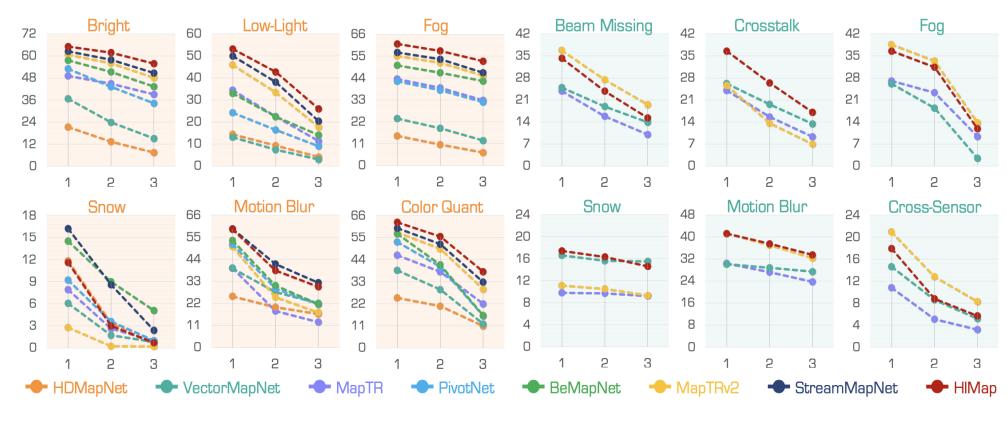
Xiaoshuai Hao, Mengchuan Wei,
Yifan Yang, Haimei Zhao, Hui Zhang,
Yi Zhou, Qiang Wang, Weiming Li,
Lingdong Kong \*, Jing Zhang \*



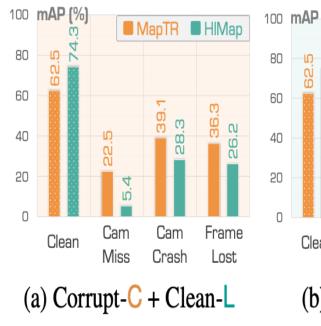


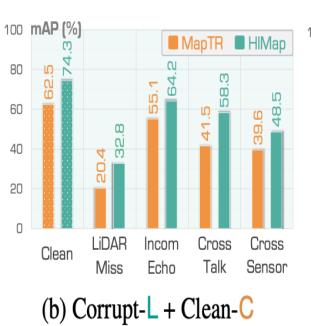

# Experimental Analysis

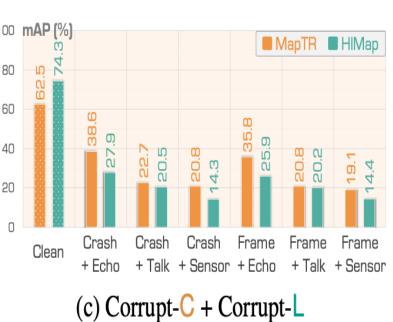
#### Benchmarking HD map constructors


✤ We report the basic information of different models in Tab. 1.

| Method            | Venue    | Modal | <b>BEV Encoder</b> | Backbone  | Epoch | $  \mathbf{AP}_{p.} \uparrow$ | $\mathbf{AP}_{d.}\uparrow$ | $\mathbf{AP}_{b.}\uparrow$ | mAP↑ | <b>mRR</b> ↑ | mCE↓  |
|-------------------|----------|-------|--------------------|-----------|-------|-------------------------------|----------------------------|----------------------------|------|--------------|-------|
| HDMapNet [35]     | ICRA'22  | C     | NVT                | Effi-B0   | 30    | 14.4                          | 21.7                       | 33.0                       | 23.0 | 43.3         | 187.8 |
| VectorMapNet [43] | ICML'23  | С     | IPM                | R50       | 110   | 36.1                          | 47.3                       | 39.3                       | 40.9 | 40.6         | 148.5 |
| PivotNet [11]     | ICCV'23  | С     | PersFormer         | R50       | 30    | 53.8                          | 58.8                       | 59.6                       | 57.4 | 45.2         | 96.3  |
| BeMapNet [50]     | CVPR'23  | С     | IPM-PE             | R50       | 30    | 57.7                          | 62.3                       | 59.4                       | 59.8 | 50.3         | 78.5  |
| MapTR [41]        | ICLR'23  | С     | GKT                | R50       | 24    | 46.3                          | 51.5                       | 53.1                       | 50.3 | 49.3         | 100.0 |
| MapTRv2 [42]      | arXiv'23 | С     | BEVPool            | R50       | 24    | 59.8                          | 62.4                       | 62.4                       | 61.5 | 51.4         | 72.6  |
| StreamMapNet [73] | WACV'24  | С     | BEVFormer          | R50       | 30    | 61.7                          | 66.3                       | 62.1                       | 63.4 | 54.4         | 64.8  |
| HIMap [77]        | CVPR'24  | С     | BEVFormer          | R50       | 24    | 62.2                          | 66.5                       | 67.9                       | 65.5 | 56.6         | 56.9  |
| VectorMapNet [43] | ICML'23  | L     | -                  | PP        | 110   | 25.7                          | 37.6                       | 38.6                       | 34.0 | 63.4         | 94.9  |
| MapTR [41]        | ICLR'23  | L     | -                  | SEC       | 24    | 48.5                          | 53.7                       | 64.7                       | 55.6 | 55.1         | 100.0 |
| MapTRv2 [42]      | arXiv'23 | L     | -                  | SEC       | 24    | 56.6                          | 58.1                       | 69.8                       | 61.5 | 57.2         | 74.6  |
| HIMap [77]        | CVPR'24  | L     | -                  | SEC       | 24    | 54.8                          | 64.7                       | 73.5                       | 64.3 | 59.2         | 73.1  |
| MapTR [41]        | ICLR'23  | C & L | GKT                | R50 & SEC | 24    | 55.9                          | 62.3                       | 69.3                       | 62.5 | 57.1         | 100.0 |
| HIMap [77]        | CVPR'24  | C & L | BEVFormer          | R50 & SEC | 24    | 71.0                          | 72.4                       | 79.4                       | 74.3 | 41.7         | 110.6 |


The correlations of accuracy (mAP) and robustness (mCE/mRR) for the Camera (a) and (b) and LiDAR (c) and (d) models.





The mAP metrics of state-of-the-art HD map constructors under each of the three severity levels (Esay, Moderate, and Hard) in different Camera and LiDAR sensor corruption scenarios.



#### Camera-LiDAR Fusion Benchmarking Results











# **Observation & Discussion**

#### Ablation on the use of BEV encoders

| Method  | Encode                      | $\mathbf{AP}_{p.}$ | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$ | mAP  | mRR | mCE  |
|---------|-----------------------------|--------------------|--------------------|--------------------|------|-----|------|
| MapTR o | BEVFormer<br>BEVPool<br>GKT | 44.9               | 51.9               | 53.5               | 50.1 |     | 99.3 |

# Ablation on the use of temporal fusion

| Method      | Temp         | $\mathbf{AP}_{p.}$ | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$ | mAP         | mRR  | mCE   |
|-------------|--------------|--------------------|--------------------|--------------------|-------------|------|-------|
| StreamMap • | ×            | 17.2               | 22.6               | 31.6               | 23.8        | 47.1 | 100.0 |
| StreamMap • | $\checkmark$ | <b>21.4</b>        | 27.4               | 35.2               | <b>28.0</b> | 55.5 | 85.9  |

# Ablation on the use of backbone nets

| Method     | Back    | $\mathbf{AP}_{p.}$ | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$ | mAP  | mRR  | mCE         |
|------------|---------|--------------------|--------------------|--------------------|------|------|-------------|
| PivotNet o | R50     | 53.8               | 58.8               | 59.6               | 57.4 | 45.2 | 100.0       |
| PivotNet o | Effi-B0 | 53.9               | 59.7               | 61.0               | 58.2 | 49.9 | 87.4        |
| PivotNet • | SwinT   | 58.7               | <b>63</b> .8       | <b>64</b> .9       | 62.5 | 50.8 | <b>77.8</b> |
| BeMapNet o | R50     | 57.7               | 62.3               | 59.4               | 59.8 | 50.3 | 100.0       |
| BeMapNet o | Effi-B0 | 56.0               | 62.2               | 59.0               | 59.1 | 53.9 | 94.0        |
| BeMapNet • | SwinT   | 61.3               | 64.4               | 61.6               | 62.5 | 57.9 | 75.9        |

# Ablation on different training epochs

| Method     | Epoch | $\mathbf{AP}_{p.}$ | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$ | mAP         | mRR          | mCE         |
|------------|-------|--------------------|--------------------|--------------------|-------------|--------------|-------------|
| MapTR •    | 24    | 46.3               | 51.5               | 53.1               | 50.3        | 49.3         | 100.0       |
| MapTR •    | 110   | 56.2               | <b>59.8</b>        | 60.1               | 58.7        | <b>49.3</b>  | 80.9        |
| PivotNet o | 30    | 58.7               | 63.8               | 64.9               | 62.5        | 50.8         | 100.0       |
| PivotNet • | 110   | <b>62</b> .6       | <b>68.0</b>        | 69.7               | <b>66.8</b> | <b>49</b> .9 | 90.2        |
| BeMapNet o | 30    | 61.3               | 64.4               | 61.6               | 62.5        | 57.9         | 100.0       |
| BeMapNet • | 110   | 64.6               | <b>68.9</b>        | 67.5               | 67.0        | 56.7         | <b>89.2</b> |

# Efficacy of Camera-based data augmentation techniques

| Method           | $\mathbf{AP}_{p.}$ | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$ | mAP  | mRR         | mCE   |
|------------------|--------------------|--------------------|--------------------|------|-------------|-------|
| None             | 45.6               | 50.1               | 52.3               | 49.3 | 41.1        | 100.0 |
| Rotate [37]      | 44.6               | 50.5               | 54.0               | 49.7 | 38.1        | 105.1 |
| Flip [37]        | 44.7               | 53.0               | 53.4               | 50.4 | 38.7        | 102.5 |
| PhotoMetric [33] | <b>46.3</b>        | 51.5               | 53.1               | 50.3 | <b>49.3</b> | 84.5  |

#### Efficacy of LiDAR-based data augmentation techniques

| Method                        | $\mathbf{AP}_{p.}$                          | $\mathbf{AP}_{d.}$ | $\mathbf{AP}_{b.}$                        | mAP                                        | mRR                                         | mCE         |
|-------------------------------|---------------------------------------------|--------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|-------------|
| None                          | 26.6                                        | 31.7               | 41.8                                      | 33.4                                       | 55.1                                        | 100.0       |
| Dropout [9]<br>RTS-LiDAR [23] | $\begin{array}{c} 28.4 \\ 28.3 \end{array}$ | $31.0 \\ 32.7$     | $\begin{array}{c} 42.5\\ 44.1\end{array}$ | $\begin{array}{c} 33.9\\ 35.0 \end{array}$ | $\begin{array}{c} 56.9 \\ 57.0 \end{array}$ | 98.9 $94.0$ |
| PolarMix [61]                 | <b>30</b> .1                                | 33.0               | 46.1                                      | <b>36</b> .4                               | <b>55.2</b>                                 | <b>93.5</b> |