

A SARS-CoV-2 Interaction Dataset and VHH Sequence Corpus for Antibody Language Models

Hirofumi Tsuruta^{1,2}, Hiroyuki Yamazaki^{1,3}, Ryota Maeda^{1,3}, Ryotaro Tamura^{1,2}, Akihiro Imura^{1,3}

¹COGNANO Inc., ²SAKURA internet Inc., ³Biorhodes, Inc.

Background

- **Antibodies** are proteins produced by the immune system to eliminate harmful foreign substances and have become pivotal therapeutic agents for treating human diseases.
- An antibody sequence can be represented as a **string of letters** representing a type of amino acid.
- Recent advances in the **pre-training paradigm** for language models have been increasingly applied to antibody sequences to accelerate antibody discovery.

Pre-trained Antibody Language Models

Characteristics of pre-trained antibody language models.

	Pre	-training			Evaluation	
Model	Dataset	#Samples	Chain Type	Dataset	#Samples	Task
AntiBERTy	OAS	588M	Heavy, light	HIV-1 donor repertoires	232,593	Evolutionary analysis
AntiBERTa	OAS	72M	Heavy, light	SAbDab	900	Paratope prediction
AbLang-H	OAS	14 M	Heavy	OAS	2,000	Sequence restoration
AbLang-L	OAS	0.24M	Light	OAS	4,200	Sequence restoration
		20M	Heavy, light	Mason et al.'s dataset	21,612	Binding prediction
	OAS			SAbDab	1,662	Paratope prediction
EAILM				Mroczek et al.'s dataset	88,094	B cell classification
				OAS, CoV-AbDab	22,000	Antibody discovery
BERT-DS	OAS	20M	Heavy	HER2affmat	234,088	Binding prediction
AntiBERTa2	OAS,	824M	Heavy, light	Mason et al.'s dataset	22,779	Binding prediction
	proprietary dataset	02-111				
	OAS 2B		Heavy, light	OAS	20,000	Sequence restoration
IgBert		2B		FLAb	6,745	Binding affinity prediction
				OAS	1,000	Perplexity
VHHBERT	VHHCorpus-2M	2M	Heavy	AVIDa-SARS-CoV-2	77,003	Binding prediction

Pre-trained Antibody Language Models

Characteristics of pre-trained antibody language models.

	Pre	-training			Evaluation			
Model	Dataset	#Samples	Chain Type	Dataset	#Samples	Task		
AntiBERTy	OAS	588M	Heavy, light	HIV-1 donor repertoires	232,593	Evolutionary analysis		
AntiBERTa	OAS	72M	Heavy, light	SAbDab	900	Paratope prediction		
AbLang-H	OAS	14 M	Heavy	OAS	2,000	Sequence restoration		
AbLang-L	OAS	0.24M	Light	OAS	4,200	Sequence restoration		
	OAS	20M	Heavy, light	Mason et al.'s dataset	21,612	Binding prediction		
EATLM				SAbDab	1,662	Paratope prediction		
				Mroczek et al.'s dataset	88,094	B cell classification		
				OAS, CoV-AbDab	22,000	Antibody discovery		
BERT-DS	OAS	20M	Heavy	HER2affmat	234,088	Binding prediction		
AntiBERTa2	OAS, 824		OAS,	824M	Heavy light	Mason <i>et al</i> 's dataset	22 779	Binding prediction
	proprietary dataset	ary dataset	Heavy, light		22,119	Bilding prediction		
	OAS		Heavy, light	OAS	20,000	Sequence restoration		
IgBert		2B		FLAb	6,745	Binding affinity prediction		
				OAS	1,000	Perplexity		
VHHBERT	VHHCorpus-2M	2M	Heavy	AVIDa-SARS-CoV-2	77,003	Binding prediction		

Limitations

Lack of paired heavy and light chain sequences

Conventional antibody

Camelid heavy-chain antibody

Pre-trained Antibody Language Models

Characteristics of pre-trained antibody language models.

	Pre	-training			Evaluation	
Model	Dataset	#Samples	Chain Type	Dataset	#Samples	Task
AntiBERTy	OAS	588M	Heavy, light	HIV-1 donor repertoires	232,593	Evolutionary analysis
AntiBERTa	OAS	72M	Heavy, light	SAbDab	900	Paratope prediction
AbLang-H	OAS	14 M	Heavy	OAS	2,000	Sequence restoration
AbLang-L	OAS	0.24M	Light	OAS	4,200	Sequence restoration
	OAS	20M	Heavy, light	Mason et al.'s dataset	21,612	Binding prediction
				SAbDab	1,662	Paratope prediction
EAILM				Mroczek et al.'s dataset	88,094	B cell classification
				OAS, CoV-AbDab	22,000	Antibody discovery
BERT-DS	OAS	20M	Heavy	HER2affmat	234,088	Binding prediction
AntiBERTa2	OAS, proprietary dataset	824M	Heavy, light	Mason et al.'s dataset	22,779	Binding prediction
	OAS 2B		Heavy, light	OAS	20,000	Sequence restoration
IgBert		2B		FLAb	6,745	Binding affinity prediction
				OAS	1,000	Perplexity
VHHBERT	VHHCorpus-2M	2M	Heavy	AVIDa-SARS-CoV-2	77,003	Binding prediction

Limitations

- Small sample size
- Lack of full-length antibody sequences

Overview of the Released Datasets

1. VHHCorpus-2M

2. AVIDa-SARS-CoV-2

% Tsuruta, H. et al.: AVIDa-hIL6: A large-scale VHH dataset produced from an immunized alpaca for predicting antigen-antibody interactions. In: Advances in Neural Information Processing Systems 36 (2023)

Individual Differences in SARS-CoV-2-specific VHHs

Two-dimensional representation of binder sequences colored by (a) individuals and (b) clusters with 95% sequence identity. Each plot represents a unique VHH binder.

Using multiple individuals contributes to enhancing the diversity of antigen-specific VHH sequences and provides valuable insights into individual differences in antibody production.

Benchmarks: Task & Models

Benchmarks: Results

Performance comparisons of baseline models for VHH-antigen binding prediction.

Model	Accuracy	Precision	Recall	F1-score	AUPRC
ProtBert	0.803 ± 0.012	0.602 ± 0.036	0.564 ± 0.046	0.580 ± 0.023	0.532 ± 0.073
ESM-2 150M	0.801 ± 0.010	0.607 ± 0.034	0.514 ± 0.036	0.555 ± 0.021	0.531 ± 0.047
ESM-2 650M	0.822 ± 0.020	0.682 ± 0.083	0.540 ± 0.048	0.598 ± 0.023	0.584 ± 0.069
AbLang-H	0.828 ± 0.004	0.753 ± 0.033	0.430 ± 0.017	0.547 ± 0.005	0.589 ± 0.018
AntiBERTa2	0.851 ± 0.007	0.769 ± 0.044	0.551 ± 0.021	0.641 ± 0.008	0.660 ± 0.018
AntiBERTa2-CSSP	$\textbf{0.854} \pm \textbf{0.007}$	0.773 ± 0.030	0.565 ± 0.014	$\textbf{0.652} \pm \textbf{0.014}$	$\textbf{0.690} \pm \textbf{0.011}$
IgBert	0.845 ± 0.007	0.741 ± 0.045	0.558 ± 0.045	0.634 ± 0.018	0.610 ± 0.044
VHHBERT	0.823 ± 0.011	0.658 ± 0.042	$\textbf{0.567} \pm \textbf{0.025}$	0.608 ± 0.012	0.650 ± 0.025
VHHBERT w/o PT	0.831 ± 0.003	$\textbf{0.811} \pm \textbf{0.024}$	0.392 ± 0.010	0.528 ± 0.008	0.624 ± 0.008

- Pre-training with antibody sequences, rather than general proteins, contributes to the performance of antibody-specific tasks.
- Additional pre-training of AntiBERTa2-CSSP using human antibody structures contributed to improved performance in predicting VHH-antigen binding.
- AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction.

Benchmarks: Results

Performance comparisons	of baseline models for	VHH-antigen binding prediction.
-------------------------	------------------------	---------------------------------

Model	Accuracy	Precision	Recall	F1-score	AUPRC
ProtBert	0.803 ± 0.012	0.602 ± 0.036	0.564 ± 0.046	0.580 ± 0.023	0.532 ± 0.073
ESM-2 150M	0.801 ± 0.010	0.607 ± 0.034	0.514 ± 0.036	0.555 ± 0.021	0.531 ± 0.047
ESM-2 650M	0.822 ± 0.020	0.682 ± 0.083	0.540 ± 0.048	0.598 ± 0.023	0.584 ± 0.069
AbLang-H	0.828 ± 0.004	0.753 ± 0.033	0.430 ± 0.017	0.547 ± 0.005	0.589 ± 0.018
AntiBERTa2	0.851 ± 0.007	0.769 ± 0.044	0.551 ± 0.021	0.641 ± 0.008	0.660 ± 0.018
AntiBERTa2-CSSP	$\textbf{0.854} \pm \textbf{0.007}$	0.773 ± 0.030	0.565 ± 0.014	$\textbf{0.652} \pm \textbf{0.014}$	$\textbf{0.690} \pm \textbf{0.011}$
IgBert	0.845 ± 0.007	0.741 ± 0.045	0.558 ± 0.045	0.634 ± 0.018	0.610 ± 0.044
VHHBERT	0.823 ± 0.011	0.658 ± 0.042	$\textbf{0.567} \pm \textbf{0.025}$	0.608 ± 0.012	0.650 ± 0.025
VHHBERT w/o PT	0.831 ± 0.003	$\textbf{0.811} \pm \textbf{0.024}$	0.392 ± 0.010	0.528 ± 0.008	0.624 ± 0.008

- Pre-training with antibody sequences, rather than general proteins, contributes to the performance of antibody-specific tasks.
- Additional pre-training of AntiBERTa2-CSSP using human antibody structures contributed to improved performance in predicting VHH-antigen binding.
- AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction.

Benchmarks: Results

Performance comparisons of baseline models for VHH-antigen binding prediction.

Model	Accuracy	Precision	Recall	F1-score	AUPRC
ProtBert	0.803 ± 0.012	0.602 ± 0.036	0.564 ± 0.046	0.580 ± 0.023	0.532 ± 0.073
ESM-2 150M	0.801 ± 0.010	0.607 ± 0.034	0.514 ± 0.036	0.555 ± 0.021	0.531 ± 0.047
ESM-2 650M	0.822 ± 0.020	0.682 ± 0.083	0.540 ± 0.048	0.598 ± 0.023	0.584 ± 0.069
AbLang-H	0.828 ± 0.004	0.753 ± 0.033	0.430 ± 0.017	0.547 ± 0.005	0.589 ± 0.018
AntiBERTa2	0.851 ± 0.007	0.769 ± 0.044	0.551 ± 0.021	0.641 ± 0.008	0.660 ± 0.018
AntiBERTa2-CSSP	$\textbf{0.854} \pm \textbf{0.007}$	0.773 ± 0.030	0.565 ± 0.014	$\textbf{0.652} \pm \textbf{0.014}$	$\textbf{0.690} \pm \textbf{0.011}$
IgBert	0.845 ± 0.007	0.741 ± 0.045	0.558 ± 0.045	0.634 ± 0.018	0.610 ± 0.044
VHHBERT	0.823 ± 0.011	0.658 ± 0.042	$\textbf{0.567} \pm \textbf{0.025}$	0.608 ± 0.012	0.650 ± 0.025
VHHBERT w/o PT	0.831 ± 0.003	$\textbf{0.811} \pm \textbf{0.024}$	0.392 ± 0.010	0.528 ± 0.008	0.624 ± 0.008

- Pre-training with antibody sequences, rather than general proteins, contributes to the performance of antibody-specific tasks.
- Additional pre-training of AntiBERTa2-CSSP using human antibody structures contributed to improved performance in predicting VHH-antigen binding.
- AVIDa-SARS-CoV-2 provides valuable benchmarks for evaluating the representation capabilities of antibody language models for binding prediction.

Thank You!

Project Page: https://datasets.cognanous.com

AVIDa-SARS-CoV-2

AVIDa-SARS-CoV-2 is a dataset featuring the antigen-variable domain of heavy chain of heavy chain antibody (VHH) interactions obtained from two alpacas immunized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. AVIDa-SARS-CoV-2 includes binary labels indicating the binding or non-binding of diverse VHH sequences to 12 SARS-CoV-2 mutants, such as the Delta and Omicr...

VHHCorpus

VHHCorpus is a pre-training corpus with fulllength amino acid sequences of variable domain of heavy chain of heavy chain antibody (VHH) collected from alpacas. We currently released VHHCorpus-2M containing over two million unlabeled VHH sequences. VHHCorpus-2M can be used for pre-training of VHH-specific language models.

Scan QR Code

Learn more

Learn more