
A Cross-Domain Benchmark for Active Learning

Main Findings

Our experiments revealed a dependency of the top-performing algorithms 
on the data domain. While margin sampling performs very well for Tabular, 
Text, and Semi-Supervised Domains, it comparatively underperforms for 
image data. Furthermore, for images, least confident sampling performs 
best, while it performs way worse for other domains. This is an important 
finding, as the image domain - evidently and outlier - is the most researched 
domain for active learning. This highlights the importance of testing AL 
algorithms across as many domains as possible.

Synthetic Datasets
Each dataset was designed to either challenge uncertainty sampling or 
clustering methods

3-5 repetitions are not enough to produce consistent results

We computed 100 runs of our top-performing AL method on one dataset. 
This allows us firstly, to obtain a very strong estimation of the “true” average 
performance on this particular dataset and secondly, to draw subsets from 
this pool of 100 runs. Setting the size of our draws to α and sampling 
uniformly, we can approximate a cross-validation process with α repetitions. 
Each of these draws (blue lines) can be interpreted as a reported result in 
AL literature where the authors employed α repetitions.

Results for all Domains
Average rank of each algorithm over datasets and query sizes

Basing our evaluation on ranks allows us to average the performance of 
algorithms across different datasets and query sizes without risking a skew 
from different scales. We also employed a paired-t-test instead of the 
regular t-test and display the significances in Critical Difference Diagrams. 
The paired-t-test is made possible by specialized seeding in our 
framework.

Critical Difference Diagrams for each domain across all datasets and query sizes. Lower rank is better.
A horizontal bar means that a group of algorithms is not significantly different, based on the paired-t-test.
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Benchmark Sampling # Datasets # Algorithms Image Text Tabular Synthetic Semi-Sup. Oracle Repetitions

Beck et al. Batch 4 7 ✓ - - - - - -

Hu et al. Batch 5 13 ✓ ✓ - - - - 3

Zhou et al. Batch 3 2 ✓ ✓ - - - ✓ 5

Zahn et al. Single + Batch 35 18 - - ✓ ✓ - ✓ 10-100

Munjal et al. Batch 2 8 ✓ - - - - - 3

Li et al. Batch 5 13 ✓ - - - ✓ - -

Rauch et al. Batch 11 5 - ✓ - - - - 5

Zhang et al. Batch 6 7 ✓ - - - - - 2-4

Bahri et al. Batch 69 16 - - ✓ - - - 2-4

Ji et al. Batch 3 8 ✓ - - - - - -

Lueth et al. Batch 4 5 ✓ - - - ✓ - 3

Ours Single + Batch 9(14) 11 ✓ ✓ ✓ ✓ ✓ ✓ 50

Code available!

Synthetic datasets allow us to measure princinpled shortcomings of 
well-known AL algorithms. Even though these shortcomings might already 
be known for some algorithms, they have yet to be tested systematically.

The Diverging Sine dataset is designed to be hard to solve for clustering algorithms. This dataset needs a lot of samples 
on the left-hand side and progressively less towards the right. The dynamic nature of the sine functions promt clustering 
algorithms to sample uniformly accross X and therefore oversample the right hand side.

The Honeypot dataset is designed to be hard to solve for uncertainty sampling algorithms. This dataset introduces a 
noisy region in dataspace where the labels are random. Uncertainty sampling algorithms will heavily oversample this 
noisy region without improving the classifier much, while clustering algorithms will equally sample from all three regions.

The image domain is an outlier


