

TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs

Zhuofeng Li∗**△**, **Zixing Gou**∗**▽**, Xiangnan Zhang◇, Zhongyuan Liu∘, Sirui Li†,

Yuntong Hu⁺, Chen Ling⁺, Zheng Zhang⁺, Liang Zhao⁺

△Shanghai University, ▽Shandong University, ◇Johns Hopkins University,

•China University of Petroleum (East China), †Emory University

* These two authors contribute equally to this paper.

CONTENT

BACKGROUND

BACKGROUND

• Graphs in the world are ubiquitous, diverse and entangled.

Image credit : <u>Télécom Paris</u>

Ubiquitous

• Textual-Edge Graphs (TEGs): Rich textual descriptions on nodes and edges.

Textual-edge Graph Example

Scientific articles in quantum theory

linked by citations.

BACKGROUND

- Representation Learning on TEGs
 - Pre-trained Language Model (PLM) based methods
 - LLMs: Llama, PaLM, GPT
 - Problem: Ignore the topology among graphs

- Graph Neural Network (GNN) based methods
 - GNNs: GCN, GAT, GraphSAGE, GIN, RevGAT
 - Problem: Fall short of fully capture semantic information

$$oldsymbol{h}_{u}^{(k+1)} = \mathrm{MLP}_{oldsymbol{\psi}}^{(k)} \left(oldsymbol{h}_{u}^{(k)}
ight)
onumber \ oldsymbol{h}_{u}^{(0)} = \mathrm{PLM}(T_{u}) + \sum_{v \in \mathcal{N}(u)} \mathrm{PLM}(T_{e_{v,u}})$$

$$\boldsymbol{h}_{u}^{(k+1)} = \text{UPDATE}_{\boldsymbol{\omega}}^{(k)} \left(\boldsymbol{h}_{u}^{(k)}, \text{AGGREGATE}_{\boldsymbol{\omega}}^{(k)} \left(\left\{ \boldsymbol{h}_{v}^{(k)}, \boldsymbol{e}_{v,u}, v \in \mathcal{N}(u) \right\} \right) \right)$$

BACKGROUND

- Representation Learning on TEGs
 - LLM as predictor
 - Problems: Information loss and limitations in efficiency
 - Benchmarks for existing text-attributed graphs
 - First stage datasets: mag, ogbn-arxiv
 - Second stage: CS-TAG
 - Problems:
 - 1. Include texts only on nodes
 - 2. Lack coverage across diverse domains and tasks
 - 3. Lack of uniformity in representation formats

 $A=f\{\mathcal{G},Q\}$

DATASETS

- Previous Datasets
 - Overlook the text information from the edge
 - Lack a standardized data format
 - TEG datasets are inadequate

- Improved Datasets —— TEG
 - Rich textual descriptions on both nodes and edges
 - Cover a wide range of domains and sizes.
 - Unified format

	Dataset	Nodes	Edges	Nodes-Class	Graph Domain	Size	Nodes-text	Edges-text	Node Classification	Link Prediction
	Twitch Social Network 35	7,126	88,617	2	Social Networks	Small	×	×	1	×
	Facebook Page-Page Network 36	22,470	171,002	4	Social Networks	Small	×	×	1	×
	ogbn-arxiv 13	169,343	1,166,243	40	Academic	Medium	1	×	1	×
	Citeseer 37	3,327	4,732	6	Academic	Small	×	×	1	×
	Pubmed 37	19,717	44,338	3	Academic	Small	×	×	1	×
	Cora 28	2,708	5,429	7	Academic	Small	×	×	1	×
Previous	CitationV8 46	1,106,759	6,120,897	-	Academic	Large	1	×	×	1
	GoodReads 46	676,084	8,582,324	11	Book Recommendation	Large	1	×	×	1
	Sports-Fitness 46	173,055	1,773,500	13	E-commerce	Medium	1	×	1	×
	Ele-Photo 46	48,362	500,928	12	E-commerce	Small	1	×	1	×
	Books-History 46	41,551	358,574	12	E-commerce	Small	1	×	1	×
	Books-Children 46	76,875	1,554,578	24	E-commerce	Small	1	×	1	×
5	ogbn-arxiv-TA 46	169,343	1,166,243	40	Academic	Medium	1	×	1	×
1 	Goodreads-History	540,807	2,368,539	11	Book Recommendation	Large	1	~	1	1
	Goodreads-Crime	422,653	2,068,223	11	Book Recommendation	Large	1	1	1	1
	Goodreads-Children	216,624	858,586	11	Book Recommendation	Large	1	1	1	1
	Goodreads-Comics	148,669	631,649	11	Book Recommendation	Medium	1	1	1	1
Ours	Amazon-Movie	137,411	2,724,028	399	E-commerce	Medium	1	1	1	1
	Amazon-Apps	31,949	62,036	62	E-commerce	Small	1	1	1	1
	Reddit	478,022	676,684	3	Social Networks	Large	1	1	1	1
	Twitter	18,761	23,764	-	Social Networks	Small	1	1	×	1
-	Citation	4,972,456	5,970,965	24	Academic	Large	1	1	1	1

METHODS

- Entangled GNN-based Paradigm
 - Entangled edge-text encoding with node-aware tokens
 - Initialize node representation using PLM

 $h_{u}^{0} = PLM(T_{u'}\{T_{v'}T_{e_{v,u'}}v \in N(u)\})$

Message Update

 $\mathbf{h}_{u}^{(k+1)} = UPDATE_{\omega}^{(k)}(\mathbf{h}_{u}^{(k)}, AGGREGATE_{\omega}^{(k)}(\{\mathbf{h}_{v}^{(k)}, v \in N(u)\}))$

Node u Representation via Entangled Edge-Text Encoding

• Link prediction among GNN-based methods

an a					Chile	dren				1	D.				Crir	ne				
Methods	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	ERT	No	one	Entangl	led-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	No	ne
	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1
MLP	0.9146	0.8459	0.8952	0.8198	0.8948	0.8193	0.8947	0.8192	0.8929	0.8181	0.9030	0.8429	0.8911	0.8144	0.8909	0.8145	0.8920	0.8153	0.8913	0.8149
GraphSAGE General GNN	0.9744	0.9011	0.9520	0.8866	0.9493	0.8821	0.9503	0.8848	0.9400	0.8736	0.9331	0.8629	0.9241	0.8541	0.9537	0.8887	0.9529	0.8868	0.9053	0.8320
GINE	0.9558	0.9132	0.9518	0.8939	0.9463	0.8878	0.9491	0.8914	0.9389	0.8748	0.9324	0.8589	0.9125	0.8429	0.9517	0.8878	0.9538	0.8928	0.9132	0.8448
EdgeGNN GraphTransformer	0.9604 0.9625	0.9055 0.8950	0.9487 0.9487	0.8851 0.8751	0.9488 0.9441	$0.8884 \\ 0.8742$	0.9504 0.9431	0.8891 0.8763	0.9352 0.9241	0.8765 0.8333	0.9309 0.9123	0.8575 0.8592	0.9104 0.9078	0.8410 0.8309	0.9545 0.9465	0.8914 0.8769	0.9535 0.9479	0.8897 0.8817	0.9036 0.8985	0.8345 0.8256

					Amazoi	n-Apps									Amazon-	Movie				
Methods	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	No	one	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	Nor	ne
	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1
MLP	0.8950	0.7980	0.8642	0.7752	0.8639	0.7698	0.8634	0.7698	0.8655	0.7738	0.8509	0.7490	0.8227	0.7269	0.8349	0.7553	0.8349	0.7555	0.8205	0.7317
GraphSAGE	0.8911	0.8073	0.8662	0.7853	0.8813	0.7971	0.8783	0.8015	0.8634	0.7366	0.8725	0.7911	0.8500	0.7665	0.9067	0.8298	0.9178	0.8426	0.8507	0.7591
General GNN	0.8956	0.8340	0.8810	0.8178	0.8768	0.8131	0.8757	0.8090	0.8680	0.8129	0.8849	0.8134	0.8659	0.7928	0.9206	0.8485	0.8937	0.8483	0.8617	0.7918
GINE	0.8875	0.8179	0.8559	0.8099	0.8680	0.8092	0.8555	0.8123	0.8671	0.8065	0.8712	0.8154	0.8603	0.7911	0.9187	0.8454	0.9165	0.8456	0.8591	0.7879
EdgeGNN	0.8956	0.8403	0.8720	0.8180	0.8813	0.8153	0.8804	0.8184	0.8520	0.8043	0.8708	0.8035	0.8565	0.7842	0.9171	0.8436	0.9181	0.8468	0.8552	0.7837
GraphTransformer	0.8634	0.7820	0.8395	0.7647	0.8748	0.7926	0.8736	0.7846	0.8469	0.7329	0.8537	0.7698	0.8339	0.7453	0.9035	0.8196	0.9044	0.8185	0.8393	0.7550

					Cita	tion				i i	1				Twit	ter				
Methods	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	ERT	No	one	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	No	ne
	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1
MLP	0.9251	0.8679	0.9170	0.8598	0.9173	0.8561	0.8935	0.8613	0.8857	0.8015	0.7085	0.5669	0.6991	0.5430	0.8115	0.7898	0.8136	0.7148	0.7007	0.5430
GraphSAGE	0.9494	0.8972	0.9369	0.8758	0.9457	0.8832	0.9780	0.9300	0.8925	0.8345	0.6998	0.6486	0.6779	0.6193	0.8609	0.8177	0.8359	0.7964	0.5668	0.5940
General GNN	0.9470	0.8840	0.9258	0.8739	0.9281	0.8637	0.9327	0.8757	0.8984	0.8397	0.8118	0.7247	0.7888	0.7094	0.8531	0.7756	0.8062	0.6552	0.7017	0.6163
GINE	0.9538	0.9085	0.9482	0.8939	0.9443	0.8825	0.9736	0.9272	0.8744	0.8145	0.6835	0.6345	0.6696	0.6135	0.8306	0.7719	0.8738	0.7880	0.7213	0.6161
EdgeGNN	0.7382	0.5545	0.7136	0.5393	0.7132	0.5352	0.7401	0.6526	0.6965	0.5449	0.6940	0.6214	0.6854	0.6123	0.8290	0.6614	0.7513	0.6745	0.6124	0.5664
GraphTransformer	0.9536	0.8963	0.9350	0.8697	0.9439	0.8713	0.9789	0.9320	0.9172	0.8441	0.7030	0.6824	0.6859	0.6764	0.8967	0.8223	0.8768	0.8165	0.5908	0.5423

EXPERIMENTS

• Node Classification among GNN-based methods

	1	23.4	they -	49 C	Child	dren	19 A	22	$b_{0,c} = b_{0}$	1999 - S.	1 3	aller - S	6. 19		Crin	ne		Con Base	- 38. N	9
Method	Entangl	ed-GPT	GPT-3.5-	-TURBO	BERT	-Large	BE	RT	No	one	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	Nor	ne
	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*
MLP	0.8785	0.5904	0.8505	0.5663	0.8593	0.5810	0.8597	0.5749	0.8452	0.5811	0.9253	0.6842	0.9149	0.6615	0.9150	0.6619	0.9151	0.6602	0.9154	0.6624
GraphSAGE	0.9569	0.8041	0.9342	0.7871	0.9162	0.7497	0.9152	0.7440	0.8713	0.6227	0.9663	0.8325	0.9549	0.8189	0.9445	0.7832	0.9463	0.7848	0.9221	0.7048
General GNN	0.9534	0.7942	0.9352	0.7846	0.9161	0.7502	0.9152	0.7451	0.8681	0.6162	0.9732	0.8437	0.9546	0.8200	0.9446	0.7854	0.9456	0.7888	0.9225	0.7262
GINE	0.9529	0.7930	0.9324	0.7777	0.9154	0.7466	0.9137	0.7552	0.8523	0.6558	0.9636	0.8260	0.9504	0.8073	0.9410	0.7766	0.9429	0.7852	0.9155	0.7117
EdgeGNN	0.9542	0.7890	0.9338	0.7808	0.9128	0.7463	0.9121	0.7452	0.8583	0.6466	0.9581	0.8179	0.9490	0.8052	0.9400	0.7657	0.9405	0.7726	0.9187	0.6830
GraphTransformer	0.9525	0.7902	0.9340	0.7823	0.9137	0.7497	0.9150	0.7491	0.8517	0.6565	0.9613	0.8322	0.9505	0.8151	0.9452	0.7795	0.9464	0.7834	0.9220	0.6944

1987 y		6.35		5	Amazor	n-Apps	200	1	5 W.	1999 - A		280 %	Stree .		Amazon-	Movie		1.36	9. 878	-
Method	Entangl	ed-GPT	GPT-3.5-	-TURBO	BERT	-Large	BE	RT	No	one	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	Noi	ne
	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*
MLP	0.7750	0.3429	0.7520	0.3204	0.8935	0.4169	0.8970	0.3107	0.7352	0.3067	0.9736	0.5475	0.9618	0.5279	0.9752	0.5331	0.9750	0.5173	0.9493	0.4625
GraphSAGE	0.9439	0.4114	0.9274	0.3899	0.9226	0.3794	0.9229	0.3929	0.9161	0.3348	0.9764	0.5325	0.9674	0.5165	0.9773	0.4919	0.9771	0.5185	0.9681	0.5096
General GNN	0.9138	0.3806	0.8947	0.3604	0.9171	0.3817	0.9223	0.3803	0.9151	0.3932	0.9969	0.5301	0.9775	0.5156	0.9768	0.4827	0.9768	0.5006	0.9757	0.5115
GINE	0.9356	0.3862	0.9170	0.3588	0.9170	0.2623	0.9185	0.3592	0.9028	0.3507	0.9732	0.4531	0.9507	0.4246	0.9758	0.4781	0.9759	0.5085	0.9168	0.4127
EdgeGNN	0.8857	0.3749	0.8764	0.3477	0.8639	0.2739	0.8800	0.3063	0.8568	0.2247	0.9483	0.5224	0.9360	0.5060	0.9372	0.4672	0.9263	0.4743	0.9492	0.4853
GraphTransformer	0.9400	0.3772	0.9195	0.3548	0.9217	0.3425	0.9225	0.3818	0.9155	0.3860	0.9910	0.5285	0.9763	0.5175	0.9764	0.4856	0.9771	0.5124	0.9756	0.5126

Sales Tes		200	100	1926	Citat	tion	101	22	1. To	2 - C.S.	l	den i	6. 8	1	Twit	ter		Sec.	100	99 19
Method	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	No	one	Entangl	ed-GPT	GPT-3.5	-TURBO	BERT	-Large	BE	RT	Noi	ne
	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1	ACC	F1
MLP	0.7892	0.7879	0.7868	0.7859	0.7515	0.7471	0.8044	0.8032	0.7493	0.7471	0.8253	0.7549	0.8115	0.7261	0.8361	0.8193	0.8533	0.8329	0.8196	0.7383
GraphSAGE General GNN	0.7984 0.8079	0.8144 0.8042	0.7883 0.7906	0.7874 0.7889	0.7559 0.7546	0.7525 0.7526	0.8046 0.8057	0.8060 0.8042	0.7341 0.7361	0.7308 0.7337	0.8614 0.8725	0.8055 0.8574	0.8411 0.8610	0.7903 0.8397	0.8446 0.8368	0.8305 0.8131	0.8384 0.8609	0.8247 0.8513	0.8286 0.8401	0.7802
GINE	0.8055	0.8141	0.7934	0.7925	0.7599	0.7574	0.8106	0.8100	0.7316	0.7284	0.8649	0.8386	0.8438	0.8186	0.8401	0.8255	0.8460	0.8328	0.8254	0.7907
EdgeGNN GraphTransformer	0.4261 0.8022	0.3957 0.7944	0.4140 0.7903	0.3845 0.7885	0.4082 0.7531	0.3763 0.7517	$0.4200 \\ 0.8070$	0.3906 0.8056	0.3935 0.7369	0.3541 0.7351	0.8714 0.8720	0.8530 0.8369	0.8551 0.8563	0.8442 0.8273	0.8649 0.8342	0.8574 0.8211	0.8694 0.8402	0.8607 0.8261	0.8529 0.8197	0.8431 0.7888

EXPERIMENTS

• Link Prediction among PLM-based methods

Methods GPT-3.5-TURBO GPT-4	Goodread	ds-Children	Goodrea	ds-Crime	Amazo	on-Apps	Amazon	n-Movie	Cita	ation	Tw	itter
wienous	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1
GPT-3.5-TURBO GPT-4	0.4770 0.8780	0.1413 0.6090	0.4507 0.8890	0.1104 0.6040	0.5000 0.6212	0.5200 0.1413	0.4843 0.5000	0.1342 0.3000	0.8860 0.4735	0.3514 0.3184	0.4800 0.4300	0.3312 0.6144

• Node Classification among PLM-based methods

Methods	Goodread	ls-Children	Goodrea	ds-Crime	Amazo	n-Apps	Amazoi	n-Movie	Cita	tion
methous	AUC*	F1*	AUC*	F1*	AUC*	F1*	AUC*	F1*	ACC	F1
GPT-3.5-TURBO GPT-4	0.5200 0.6700	0.0300 0.1800	0.5400 0.6100	0.0700 0.1400	0.5000 0.4995	0.0100 0.0002	0.5159 0.5175	0.0017 0.0029	0.7098 0.8432	0.3402 0.8450

- Introduction of TEG-DB: The first TEG benchmark, designed to advance graph representation learning on TEGs by incorporating textual content on both nodes and edges, unlike traditional TAGs.
- **Comprehensive Dataset Collection**: Provides nine extensive textual-edge datasets to encourage collaboration between NLP and GNN communities.
- Benchmark for Learning Approaches: Offers an in-depth evaluation of various methods, highlighting their strengths and limitations.
- Future Commitment: Expand and develop research-oriented TEGs to support the field's ongoing growth and innovation.

NEURAL INFORMATION PROCESSING SYSTEMS THANKS