HelpSteer2: Open-source dataset for training top-performing reward models

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J. Zhang, Makesh Narsimhan Sreedhar, Oleksii Kuchaiev

zhilinw@nvidia.com

Why do we need HelpSteer2?

1. Frontier models do not release alignment data

- a. Proprietary models: GPT; Claude; Gemini
- b. Open-weight models: Llama; Mistral; Qwen

2. Strong alignment datasets are not commercial-friendly

- a. GPT-4 labelled data are popular in academia: Ultrafeedback; Nectar
- b. Legal risks for commercial setting use: Enterprise users are often unable to use them

3. Commercial-friendly alignment datasets are not strong enough

- a. Datasets (license) : HH-RLHF (MIT); Open Assistant (Apache 2.0); HelpSteer (CC-BY-4.0)
- **b.** Weaker than GPT-4-labelled datasets: Less good aligned models trained with these.

Can we create an enterprise-friendly dataset that is strong for alignment?

What is HelpSteer2?

HelpSteer2 is an open-source, enterprise-friendly dataset for **top-performing and efficient** reward modelling.

- **Top-performing:** Used to train Nemotron-4-340B-Reward, **No. 1 on Reward Bench** (92.0) at time of release (Jun 2024). Also used by all Top 10 models on Reward Bench as of 8 Nov. 2024.
- Efficient: Contains only 10k pairs of model-responses to real-world prompts. Each responses is annotated for Helpfulness, Correctness, Coherence, Complexity and Verbosity on a Likert-5 Scale.

Available at <u>https://huggingface.co/datasets/nvidia/HelpSteer2</u> with permissive CC-BY-4.0 license, where it has accumulated over 300k downloads in 4 months.

HelpSteer2 Collection

Using HelpSteer [1] collection strategy as a start, we implemented these key changes

1. Stronger, more diverse models:

- a. HelpSteer: 1 model (Nemotron 2 43B)
- b. HelpSteer2: 6 models (Nemotron 2 43B; Nemotron 3 8B/22B; Nemotron 4 15B/340B; Mixtral 8*7B)

2. Multi-turn prompts:

- a. HelpSteer: Single-turn prompts only
- b. **HelpSteer2:** Single-turn and multi-turn prompts (to support reward modeling of response to multi-turn prompts)

3. Multiple annotator per task:

- a. HelpSteer: 1 annotator per task
- b. HelpSteer2: 3-5 annotators per task (depending on how much initial 3 annotators disagree).

[1] https://aclanthology.org/2024.naacl-long.185/

HelpSteer2 Preprocessing

What if annotators disagree with one another?

1. Work with vendor to make sure annotators interpret guidelines correctly

a. Interrater agreement (Weighted Cohen's Kappa) increases from 0.465 (moderate) to 0.706 (good) for helpfulness

2. Remove outlier annotations at a task-level

- a. When we have 5 annotations per task, we often observe 1 or 2 of them being drastically different from others.
- b. Taking a simple mean of all annotations introduces lots of noise (e.g. 0, 0, 0, 0, 4) \rightarrow mean 0.8
- c. Instead, we identify three annotations that agree most e.g. $(0, 0, 0) \rightarrow \text{mean } 0$

3. Remove outlier tasks

- a. Sometimes, even the three most-agreeing tasks disagree a lot e.g. helpfulness (1, 2, 4)
- b. To avoid noise from these tasks, we remove tasks that disagree > 2 on helpfulness.
- c. Interrater agreement increases from 0.706 (good) to 0.791 (almost excellent)

Reward Modelling

- Nemotron 4 340B trained on HelpSteer2 scores No. 1 on Reward Bench (on 12 June 2024).
- 2. Llama 3 70B model trained on HelpSteer2 is much better than other commercial friendly datasets

		Reward Bench Primary Dataset				Prior Sets	
Source of Model/Training Data	Model	Overall	Chat	Chat-Hard	Safety	Reasoning	
Proprietary Models	Nemotron-4 340B RM (w. HelpSteer2)*	92.0	95.8	87.1	91.5	93.7	67.4
	Cohere May 2024	89.5	96.4	71.3	92.7	97.7	78.2
	Gemini 1.5 Pro-0514	88.1	92.3	80.6	87.5	92.0	-
	Cohere March 2024	87.1	94.7	65.1	90.3	98.2	74.6
	GPT-4-0125-preview	85.9	95.3	74.3	87.2	86.9	70.9
	GPT-4-0409-preview	85.1	95.3	75.4	87.1	82.7	73.6
	GPT-40-0513	84.7	96.6	70.4	86.7	84.9	72.6
	Claude-3-Opus-02292024	80.7	94.7	60.3	89.1	78.7	-
Trained with GPT-4 Generated Data	ArmoRM-Llama 3 8B	90.8	96.9	76.8	92.2	97.3	74.3
	RLHFlow-Llama 3 8B [33]	87.1	98.3	65.8	89.7	94.7	74.6
	Eurus RM Mistral 7B [34]	82.8	98.0	65.6	81.2	86.3	71.7
	Starling RM Yi 34B [16]	82.7	96.9	57.2	88.2	88.5	71.4
	Prometheus 2 Mistral 8*7B [36]	75.3	93.0	47.1	83.5	77.4	-
Trained with Data allowing Permissive Use	Llama 3 70B RM (w. HelpSteer2)*	88.8	91.3	80.3	92.8	90.7	66.5
	Llama 3 70B (w. Open Assistant)*	79.1	91.3	59.2	76.0	89.9	66.7
	Llama 3 70B Instruct [8]	76.0	97.6	58.9	69.2	78.5	70.4
	Llama 3 70B (w. HH-RLHF)*	73.9	94.4	54.6	81.2	65.6	68.8
	Pythia 1.4B (w. Open Assistant)	70.0	88.5	48.7	65.3	77.5	65.3
	Llama 3 70B (w. HelpSteer)*	66.1	93.3	59.7	56.8	54.9	67.7

Table 3: Performance of Models on Reward Bench. Higher is better for each category. All numbers except models trained by us and marked with * are taken from Reward Bench leaderboard [35].

Using Reward Model to train Aligned Models

- 1. Aligned Models matches or exceeds Llama 3 70B Instruct
- 2. Only 10K human-annotated data in HelpSteer2 vs. 10M for Llama3

Technique	Model	MT Bench (GPT-4-Turbo)	Mean Response Length (Chars.)	TruthfulQA MC2	AlpacaEval 2.0 LC (SE)	Arena Hard (95% CI)
Baseline	GPT-4-0613*	8.12	1057.1	0.5900	30.20 (1.07)	37.9 (-2.8, 2.4)
	Llama 3 70B Instruct*	8.16	1683.0	0.6181	34.40 (1.38)	41.1 (-2.0, 2.2)
SFT	SFT w. DA	7.96	1514.4	0.6025	32.87 (1.40)	39.6 (-2.3, 2.4)
DPO	DPO w. HelpSteer2	8.04	1532.1	<u>0.6321</u>	30.70 (1.36)	<u>41.8</u> (-2.3, 2.3)
	Iterative DPO w. DA	8.09	1492.0	0.6328	29.17 (1.35)	42.5 (-2.1, 2.4)
PPO	PPO w. HelpSteer2	8.13	1497.3	0.5629	<u>33.17</u> (1.38)	39.9 (-2.4, 2.0)
SteerLM	SteerLM w. DA	8.17	1444.1	0.5919	31.10 (1.37)	39.3 (-2.6, 2.4)
	SteerLM 2 Iter. 1 w. DA	<u>8.24</u>	1523.0	0.5911	31.10 (1.35)	38.8 (-2.3, 2.7)
	SteerLM 2 Iter. 2 w. DA	8.28	1471.9	0.5913	29.93 (1.35)	39.1 (-2.2, 2.4)
Ablation	SFT w. Open Assistant	6.75	676.0	0.5137	13.94 (0.82)	9.8 (-1.1, 1.4)
	SteerLM w. Open Assistant	7.44	1001.3	0.5713	20.87 (1.10)	19.2 (-2.0, 1.7)

Table 4: Evaluation of Aligned Models. Higher is better for each metric, except Mean Response Length. Because we use the Llama 3 70B Base model [8] for all aligned model experiments, we use Llama 3 70B Instruct model as a baseline, together with GPT-4-0613. Models trained "w. DA" use the Daring Anteater dataset. Metrics for models marked with * are taken from external leaderboards [52–55]. **Bold** is the top model and <u>underlined</u> is the next best.