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Motivation

(b) Sixteen different antibodies bound to 
coronavirus spike protein. Complexes are 
superimposed on the antigen structure (magenta) 
and antibodies are in different colors. AbDb IDs of the 
complexes: 7k8s 0P, 7m7w 1P, 7d0b 0P, 7dzy 0P, 7ey5 
1P, 7jv4 0P, 7k8v 1P, 7kn4 1P, 7lqw 0P, 7n8i 0P, 7q9i 0P, 
7rq6 0P, 7s0e 0P, 7upl 1P, 7wk8 0P, 7wpd 0P.

One antigen can have multiple epitopes 
depending on the antibodies

the average performance metrics across the test set samples. Since various combinations of graph
architectures and pre-trained language models were tested for node embeddings, we report only
the performance of the best-performing combination in each table. WALLE generally outperforms
other methods across all metrics on both dataset splits. As previously noted, existing methods do not
evaluate interaction prediction; therefore, the baseline performance for bipartite link prediction is
provided in Table S8 for future reference.

Table 1: Performance on test set from dataset split by epitope to antigen surface ratio and epitope
groups.

(a) Performance on dataset split by epitope to antigen surface ratio.

Method MCC Precision Recall AUCROC F1
WALLE 0.305 (0.023) 0.308 (0.019) 0.516 (0.028) 0.695 (0.015) 0.357 (0.021)
EpiPred 0.029 (0.018) 0.122 (0.014) 0.180 (0.019) — 0.142 (0.016)
ESMFold 0.028 (0.010) 0.137 (0.019) 0.043 (0.006) — 0.060 (0.008)
ESMBind 0.016 (0.008) 0.106 (0.012) 0.121 (0.014) 0.506 (0.004) 0.090 (0.009)
MaSIF-site 0.037 (0.012) 0.125 (0.015) 0.183 (0.017) — 0.114 (0.011)

(b) Performance on dataset split by epitope groups.

Method MCC Precision Recall AUCROC F1
WALLE 0.152 (0.019) 0.207 (0.020) 0.299 (0.025) 0.596 (0.012) 0.204 (0.018)
EpiPred -0.006 (0.015) 0.089 (0.011) 0.158 (0.019) — 0.112 (0.014)
ESMFold 0.018 (0.010) 0.113 (0.019) 0.034 (0.007) — 0.046 (0.009)
ESMBind 0.002 (0.008) 0.082 (0.011) 0.076 (0.011) 0.500 (0.004) 0.064 (0.008)
MaSIF-site 0.046 (0.014) 0.164 (0.020) 0.174 (0.015) — 0.128 (0.012)

MCC: Matthews Correlation Coefficient; AUCROC: Area Under the Receiver Operating Characteristic Curve;
F1: F1 score. Standard errors are included in the parentheses. We omitted the results of EpiPred, ESMFold and
MaSIF-site for AUCROC. For EpiPred and ESMFold, the interface residues are determined from the predicted
structures by these methods such that the predicted values are binary and not comparable to other methods; As
for MaSIF-site, it outputs the probability of mesh vertices instead of node probabilities and epitopes are
determined as residues close to mesh vertices with probability greater than 0.7.

Table 2: Summary of Features Used in Benchmarking Methods.
Antibody Structure PLM Graph

WALLE ↭ ↭ ↭ ↭
EpiPred ↭ ↭ → ↭
ESMFold ↭ → ↭ →
MaSIF-site → ↭ → ↭
ESMBind → → ↭ →

Antibody: Antibody is taken into consideration when predicting epitope nodes;
Structure: Topological information from protein structures;

PLM: Representation from Protein Language Models;
Graph: Graph representation of protein structures.

Additionally, we benchmarked AlphaFold2-Multimer (AF2M) version 2.3 on the epitope prediction
task due to its growing use in complex structure prediction. A new subset of 76 AsEP complexes,
excluded from the AF2M training set, was curated for this purpose. Details on the filtering method,
the specific AsEP files in this subset, and AF2M performance results can be found in Appendix A.9
and Table S5. While AF2M achieves an MCC of 0.262, its performance could be further improved.
Additionally, the average runtime per antibody-antigen pair is 1.66 hours, which is not optimal for
epitope scanning, especially given that all other benchmarked methods here can make predictions
within seconds.
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Existing datasets are limited in size

Related Work

A Appendix-A

A.1 Related work

Comparison of Previous Datasets We would like to highlight our dataset, AsEP, is the largest
curated AbAg benchmarking dataset to date. Existing ones either focus on general protein-protein
complexes designed to develop general docking methods or are way smaller than AsEP if designed
for AbAg interaction research. We summarized the sizes of existing datasets in the following table.

Table S1: Comparison of Dataset Sizes Across Different Methods
Method Dataset Size
WALLE (AsEP) 1723 AbAg complexes
Wang et al. 2022 (Wang et al., 2022) 258 AbAg complexes
SAGERank (Sun et al., 2023) 287 AbAg complexes
CSM-AB (Myung et al., 2021) 472 AbAg complexes
Bepipred3.0 (Clifford et al., 2022) 582 AbAg complexes

In the work by Wang et al. (2022) the dataset from Zhao et al. (2018) was used, which included 257
antibody-antigen complexes, encompassing both VHVL and VHH antibodies. However, the primary
focus of this research is on epitope prediction using the antigen as the input. Consequently, antibodies
were not included in the predictive models, rendering the dataset unsuitable for antibody-specific
epitope prediction.

For CSM-AB, as described by their supplementary information, the dataset contains 472 antibody-
antigen structures including 375 Fab, 82 Nanobody and 12 scFv (Myung et al., 2021). These structures
were collected from PDB, identified using Chothia annotation as in (Dunbar & Deane, 2015). The
authors did not describe the procedure of any further filtering steps. We assumed they included
all available structures at that time with available protein-protein binding affinity information from
PDBbind since the study aims to predict binding affinity.

The authors of SAGERank formed a dataset composed of 287 antibody-antigen complexes filtered
by sequence identity at 95% (Sun et al., 2023) . While the authors did not explicitly mention the
antibody types, we infer from the results that these are also Fab antibodies that include both VH and
VL domains. The dataset was composed mainly for docking pose ranking output by MegaDock and
did not include interface clustering, i.e. epitope grouping.

SCEptRe by Mahajan et al. (2019) is a related dataset that keeps a weekly updated collection
of 3D complexes of epitope and receptor pairs, for example, antibody-antigen, TCR-pMHC, and
MHC-ligand complexes derived from the Immune Epitope Database (IEDB). Our approach for
clustering antibody-antigen complexes regarding their epitopes is similar to theirs, with the difference
in the clustering strategy. We cluster by antigen, then epitope group, and we allow mutated amino
acids in the same epitope region because we turn the epitope sites into columns in the multiple
sequence alignment. In contrast, SCEptRe clusters by antibody and then compares epitope similarity
by epitope conformation using atom-pair distances via PocketMatch (Yeturu & Chandra, 2008),
which is beneficial for comparing the function of various paratopes but is less suitable for our task of
predicting epitope residues.

Sequence-based epitope predictor We also tested purely sequence-based epitope prediction tool,
for example, Bepipred3.0 (Clifford et al., 2022) on our dataset. Bepipred3.0 uses ESM2 model,
esm2_t33_650M_UR50D to generate sequence embeddings and was trained on a smaller dataset
of 582 antibody-antigen structures and evaluated on 15 antibody-antigen complexes. The authors
provided a relatively larger evaluation of linear B-cell epitopes derived from the Immune Epitope
Database and reported an AUC-ROC of 0.693 on the top 10% of the predicted epitopes. We tested
Bepipred3.0 on our dataset and found its performance degenerates significantly, as shown in the
table below. This is not surprising because linear epitopes are consecutive positions in an antigen
sequence, and this task fits better with language model design. Additionally, as pointed out by the
authors, approximately 90% of epitopes (B-cell) fall into the conformational category (Clifford et al.,
2022), which highlights the importance of the present benchmark dataset composed of conformational
epitopes derived from filtered antibody-antigen structures. We believe these results underline the
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AsEP

Dataset construction - 1723 antibody-antigen complexes 

VH

VL

Ag

AbDb

11,767 AbAg complexes Extract sequences
MMseqs2

clustering and 
removing duplicates

1,723 Representatives

Snapshot: 

2022September26 • Only antibodies with both VH and 

VL domains

• Only single-chain protein antigen, 

at least 50 residues long 

• No unresolved CDR residues

• easy-linclust mode 

• -cov-mode set to 0 

• Use default coverage cutoff at 80% 

• -min-sequence-id cutoff: Ab 100% 

and Ag 70%

• Remove antibody-antigen complexes 
with duplicate VH, VL, and Ag cluster 
labels 


• Removed 2 complexes containing 
unknown and non-canonical CDR 
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AsEP - Two types of dataset splits 

Dataset split 1: epitope/antigen surface ratio

Hen egg white lysozyme

(Length: 107; PDB: 1A2Y) 

SARS-Cov-2 spike protein

(Length: 1259; PDB: 7K8S)

On average, epitopes contain 
 residues14.6 ± 4.9



AsEP

Dataset split 2: epitope group

(a) Five different antibodies bound to hen egg white lysozyme. Complexes 
are superimposed on the antigen structure (magenta). AbDb IDs of the 
complexes and their color: 1g7i 0P (green), 2yss 0P (cyan), 1dzb 1P 
(yellow), 4tsb 0P (orange), 2iff 0P (wheat). Antigens are colored in 
magenta.

1
2
3
4
5
1. Align antigen sequences as MSA

2. Map epitopes to MSA columns

3. Identity threshold 75%

• Goal: evaluate generalizability



Experiment setup

Two complementary surveys are notable:

Zhao et al. (2024) benchmarked docking methods like ZDOCK (Pierce et al., 2011), ClusPro (Kozakov
et al., 2017), and HDOCK (Yan et al., 2017), and Alphafold-Multimer (Evans et al., 2022) on a set of
112 antibody-antigen complexes. They showed that all docking methods gave a success rate of 8.0%
at most if using the top 5 decoys; AlphaFold-Multimer showed a better performance with a 15.3%
success rate, so we included AlphaFold-Multimer (version 2.3) but benchmarked on a separate
subset of the proposed dataset (AsEP) according to its training data cutoff date.

Cia et al. (2023) focused on epitope prediction using a dataset of 268 complexes, defining epitope
residues as having at least a 5% change in relative solvent accessibility upon complex formation. They
benchmarked various methods, finding existing methods insufficient for accurate epitope prediction.

3 Problem Formulation

Antibody-antigen interaction is important for analyzing protein structures. The problem can be
formulated as a bipartite graph link prediction task. The inputs are two disjoint graphs, an antibody
graph GA = (VA, EA) and an antigen graph GB = (VB , EB), where Vx is the vertice set for graph
x and Ex is the edge set for graph x. Since neural networks only take continuous values as input, we
encode each vertex into a vector with the function h : V → RD. The design choice of the encoding
function depends on the methods. For example, h can be a one-hot encoding layer or pretrained
embeddings given by a protein language model. We use different encoding functions for antibodies
and antigens: hA : VA → RDA , and hB : VB → RDB .

In addition, EA ↑ {0, 1}|VA|→|VA| and EB ↑ {0, 1}|VB |→|VB | denote the adjacency matrices for the
antibody and antigen graphs, respectively. In this work, the adjacency matrices are calculated based
on the distance matrix of the residues. Each entry eij denotes the proximity between residue i and
residue j; eij = 1 if the Euclidean distance between any non-hydrogen atoms of residue i and residue
j is less than 4.5Å, and eij = 0 otherwise (See example in Figure 1. The antibody graph GA is
constructed by combining the CDR residues from the heavy and light chains of the antibody, and the
antigen graph GB is constructed by combining the surface residues of the antigen. The antibody and
antigen graphs are disjoint, i.e., VA ↓ VB = ↔.

Figure 1: An example illustrating interacting residues. The two dashed lines indicate distances
between non-hydrogen atoms from different interacting residues across two protein chains, with each
chain’s carbon atoms colored cyan and green.

We consider two subtasks based on these inputs.

Epitope Prediction Epitopes are the regions on the antigen surface recognized by antibodies; in
other words, they are a set of antigen residues in contact with the antibody and are determined from
the complex structures using the same distance cutoff of 4.5Å as aforementioned. For a node in the
antigen graph v ↑ VB , if there exists a node in the antibody graph u ↑ VA such that the distance
between them is less than 4.5Å, then v is an epitope node. Epitope nodes and the remaining nodes in
GB are assigned labels of 1 and 0, respectively. The first task is then a node classification within the
antigen graph GB given the antibody graph GA.

3

Distance-based interface definition

amino acid on chain 2 
e.g. antigen

amino acid on chain 1, e.g. antibody

amino acid on chain 1 
e.g. antibody

Distance < 4.5 Å



Experiment setup

Represent protein structures as graphs

Top: molecular structure of an Ab-Ag complex (PDB code: 
7KFW). Spheres denote the α-carbon atoms of each amino 
acid. 
Color scheme: Antigen, Heavy FR, Light FR, CDR1, CDR2, 
CDR3. 
Bottom: the corresponding graph. Green vertices are antibody 
CDR residues. Pink vertices are antigen surface residues.
Nodes represent protein residues and are encoded into vector 
spaces using a customizable embedding function, such as a 
protein language model. 

Edges are defined by residue proximity and are labeled 1 if the 
Euclidean distance between the non-hydrogen atoms from a 
pair of residues is less than 4.5Å. 



Experiment setup

Question formulation - two tasks 
Inputs: Disjoint graphs

•Antibody graph  combining CDR 
residues from the heavy and light chains

•Antigen graph  surface residues 
of the antigen


Tasks:

1.Epitope Prediction: Classify antigen nodes as 

epitope or non-epitope.
2.Bipartite Link Prediction: Predict interaction 

links between antibody and antigen nodes 
indicating direct contact.

GA = (VA, EA)

GB = (VB, EB)



AsEp dataset

PyTorch interface (https://github.com/biochunan/AsEP-dataset )

https://github.com/biochunan/AsEP-dataset


WALLE

A hybrid method leveraging PLMs & GNNs

• Protein Language Models (PLMs)


• AntiBERTy (Antibody only) 


• ESM2-35M & ESM2-650M 


• Graph Neural Networks (GNNs)


• Graph Convolutional Network (GCN)


• Graph Attention Network (GAT) 


• GraphSAGE (SAmple and aggreGatE)
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Benchmarking Performance 

the average performance metrics across the test set samples. Since various combinations of graph
architectures and pre-trained language models were tested for node embeddings, we report only
the performance of the best-performing combination in each table. WALLE generally outperforms
other methods across all metrics on both dataset splits. As previously noted, existing methods do not
evaluate interaction prediction; therefore, the baseline performance for bipartite link prediction is
provided in Table S8 for future reference.

Table 1: Performance on test set from dataset split by epitope to antigen surface ratio and epitope
groups.

(a) Performance on dataset split by epitope to antigen surface ratio.

Method MCC Precision Recall AUCROC F1
WALLE 0.305 (0.023) 0.308 (0.019) 0.516 (0.028) 0.695 (0.015) 0.357 (0.021)
EpiPred 0.029 (0.018) 0.122 (0.014) 0.180 (0.019) — 0.142 (0.016)
ESMFold 0.028 (0.010) 0.137 (0.019) 0.043 (0.006) — 0.060 (0.008)
ESMBind 0.016 (0.008) 0.106 (0.012) 0.121 (0.014) 0.506 (0.004) 0.090 (0.009)
MaSIF-site 0.037 (0.012) 0.125 (0.015) 0.183 (0.017) — 0.114 (0.011)

(b) Performance on dataset split by epitope groups.

Method MCC Precision Recall AUCROC F1
WALLE 0.152 (0.019) 0.207 (0.020) 0.299 (0.025) 0.596 (0.012) 0.204 (0.018)
EpiPred -0.006 (0.015) 0.089 (0.011) 0.158 (0.019) — 0.112 (0.014)
ESMFold 0.018 (0.010) 0.113 (0.019) 0.034 (0.007) — 0.046 (0.009)
ESMBind 0.002 (0.008) 0.082 (0.011) 0.076 (0.011) 0.500 (0.004) 0.064 (0.008)
MaSIF-site 0.046 (0.014) 0.164 (0.020) 0.174 (0.015) — 0.128 (0.012)

MCC: Matthews Correlation Coefficient; AUCROC: Area Under the Receiver Operating Characteristic Curve;
F1: F1 score. Standard errors are included in the parentheses. We omitted the results of EpiPred, ESMFold and
MaSIF-site for AUCROC. For EpiPred and ESMFold, the interface residues are determined from the predicted
structures by these methods such that the predicted values are binary and not comparable to other methods; As
for MaSIF-site, it outputs the probability of mesh vertices instead of node probabilities and epitopes are
determined as residues close to mesh vertices with probability greater than 0.7.

Table 2: Summary of Features Used in Benchmarking Methods.
Antibody Structure PLM Graph

WALLE ↭ ↭ ↭ ↭
EpiPred ↭ ↭ → ↭
ESMFold ↭ → ↭ →
MaSIF-site → ↭ → ↭
ESMBind → → ↭ →

Antibody: Antibody is taken into consideration when predicting epitope nodes;
Structure: Topological information from protein structures;

PLM: Representation from Protein Language Models;
Graph: Graph representation of protein structures.

Additionally, we benchmarked AlphaFold2-Multimer (AF2M) version 2.3 on the epitope prediction
task due to its growing use in complex structure prediction. A new subset of 76 AsEP complexes,
excluded from the AF2M training set, was curated for this purpose. Details on the filtering method,
the specific AsEP files in this subset, and AF2M performance results can be found in Appendix A.9
and Table S5. While AF2M achieves an MCC of 0.262, its performance could be further improved.
Additionally, the average runtime per antibody-antigen pair is 1.66 hours, which is not optimal for
epitope scanning, especially given that all other benchmarked methods here can make predictions
within seconds.
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for MaSIF-site, it outputs the probability of mesh vertices instead of node probabilities and epitopes are
determined as residues close to mesh vertices with probability greater than 0.7.
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Antibody Structure PLM Graph

WALLE ↭ ↭ ↭ ↭
EpiPred ↭ ↭ → ↭
ESMFold ↭ → ↭ →
MaSIF-site → ↭ → ↭
ESMBind → → ↭ →

Antibody: Antibody is taken into consideration when predicting epitope nodes;
Structure: Topological information from protein structures;

PLM: Representation from Protein Language Models;
Graph: Graph representation of protein structures.

Additionally, we benchmarked AlphaFold2-Multimer (AF2M) version 2.3 on the epitope prediction
task due to its growing use in complex structure prediction. A new subset of 76 AsEP complexes,
excluded from the AF2M training set, was curated for this purpose. Details on the filtering method,
the specific AsEP files in this subset, and AF2M performance results can be found in Appendix A.9
and Table S5. While AF2M achieves an MCC of 0.262, its performance could be further improved.
Additionally, the average runtime per antibody-antigen pair is 1.66 hours, which is not optimal for
epitope scanning, especially given that all other benchmarked methods here can make predictions
within seconds.
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Hybrid method works better than existing methods
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Ablation studies

Both PLMs and GNNs contribute to performance 
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C.4 Hyperparameter tuning

We used the same hyperparameter search space defined in Appendix A.6 and performed a hyperpa-
rameter search as defined in Appendix B.2 for each model variant in the ablation studies. We report
the evaluation performance of the tuned model for each variant in Table S9.

Table S9: Performance of WALLE without graph component and simple node encodings on test set
from dataset split by epitope to antigen surface ratio.

Method Encoding MCC AUCROC Precision Recall F1
WALLE Both 0.264 (0.021) 0.680 (0.014) 0.258 (0.0117) 0.534 (0.027) 0.322 (0.019)
WALLE-L Both 0.159 (0.016) 0.612 (0.011) 0.175 (0.011) 0.470 (0.024) 0.237 (0.014)
WALLE ESM2 0.196 (0.021) 0.622 (0.014) 0.228 (0.019) 0.410 (0.029) 0.255 (0.019)
WALLE-L ESM2 0.145 (0.014) 0.610 (0.010) 0.160 (0.010) 0.536 (0.022) 0.227 (0.013)
WALLE One-hot 0.097 (0.009) 0.583 (0.008) 0.119 (0.005) 0.892 (0.012) 0.203 (0.008)
WALLE BLOSUM 0.085 (0.010) 0.574 (0.008) 0.118 (0.006) 0.840 (0.015) 0.199 (0.008)

The values in parentheses represent the standard error of the mean; ‘WALLE-L’ refers to WALLE
with the graph component replaced by two linear layers. ‘ESM2’ refers to the embeddings from the
ESM2 language model esm2_t12_35M_UR50D. ‘One-Hot’ refers to one-hot encoding of amino
acids. ‘BLOSUM62’ refers to the BLOSUM62 encoding of amino acids. ‘Both’ refers to embedding
antibodies and antigens using the esm2_t12_35M_UR50D ESM2 model and AntiBERTy (via IgFold)
language model, respectively. The best performing model is highlighted in bold.

We observed that WALLE’s performance with simple node encodings (‘one-hot’ and ‘BLOSUM62’)
is considerably lower than when using advanced embeddings from language models. This indicates
that the embeddings derived from language models capture more nuanced information about the
amino acids, enabling the model to better predict epitope-antigen interactions.

The degenerated performance of WALLE with simple encodings can be attributed to the lack of
contextual information and structural features in these representations. The high recall but low
precision values suggest that the model is unable to distinguish between true and false interactions,
leading to a high number of false positives. This highlights the importance of using meaningful
embeddings that capture the rich structural and sequential information present in protein sequences.

When comparing WALLE with WALLE-L (without the graph components), we observe that the
model’s performance drops considerably when the graph component is replaced with fully connected
linear layers. This indicates that the topological information captured by the graph component also
contributes to the model’s predictive performance.

We also observed that WALLE with ESM2 embeddings for both antibodies and antigens achieved
similar performance to WALLE with AntiBERTy and ESM2 embeddings for antibodies and antigens,
respectively. This suggests that the ESM2 embeddings somehow provide effective information for
both antibodies and antigens without training exclusively on antibody sequences.

31

WALLE-L: replace GNN with linear layers

Both: AntiBERTy + ESM2-35M

ESM2: ESM2-35M



Ablation studies

Both PLMs and GNNs contribute to performance 
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ESM2 language model esm2_t12_35M_UR50D. ‘One-Hot’ refers to one-hot encoding of amino
acids. ‘BLOSUM62’ refers to the BLOSUM62 encoding of amino acids. ‘Both’ refers to embedding
antibodies and antigens using the esm2_t12_35M_UR50D ESM2 model and AntiBERTy (via IgFold)
language model, respectively. The best performing model is highlighted in bold.

We observed that WALLE’s performance with simple node encodings (‘one-hot’ and ‘BLOSUM62’)
is considerably lower than when using advanced embeddings from language models. This indicates
that the embeddings derived from language models capture more nuanced information about the
amino acids, enabling the model to better predict epitope-antigen interactions.

The degenerated performance of WALLE with simple encodings can be attributed to the lack of
contextual information and structural features in these representations. The high recall but low
precision values suggest that the model is unable to distinguish between true and false interactions,
leading to a high number of false positives. This highlights the importance of using meaningful
embeddings that capture the rich structural and sequential information present in protein sequences.

When comparing WALLE with WALLE-L (without the graph components), we observe that the
model’s performance drops considerably when the graph component is replaced with fully connected
linear layers. This indicates that the topological information captured by the graph component also
contributes to the model’s predictive performance.

We also observed that WALLE with ESM2 embeddings for both antibodies and antigens achieved
similar performance to WALLE with AntiBERTy and ESM2 embeddings for antibodies and antigens,
respectively. This suggests that the ESM2 embeddings somehow provide effective information for
both antibodies and antigens without training exclusively on antibody sequences.
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Meaningful node embeddings, i.e. from 
PLMs contribute performance



Benchmarking Performance 

the average performance metrics across the test set samples. Since various combinations of graph
architectures and pre-trained language models were tested for node embeddings, we report only
the performance of the best-performing combination in each table. WALLE generally outperforms
other methods across all metrics on both dataset splits. As previously noted, existing methods do not
evaluate interaction prediction; therefore, the baseline performance for bipartite link prediction is
provided in Table S8 for future reference.

Table 1: Performance on test set from dataset split by epitope to antigen surface ratio and epitope
groups.

(a) Performance on dataset split by epitope to antigen surface ratio.

Method MCC Precision Recall AUCROC F1
WALLE 0.305 (0.023) 0.308 (0.019) 0.516 (0.028) 0.695 (0.015) 0.357 (0.021)
EpiPred 0.029 (0.018) 0.122 (0.014) 0.180 (0.019) — 0.142 (0.016)
ESMFold 0.028 (0.010) 0.137 (0.019) 0.043 (0.006) — 0.060 (0.008)
ESMBind 0.016 (0.008) 0.106 (0.012) 0.121 (0.014) 0.506 (0.004) 0.090 (0.009)
MaSIF-site 0.037 (0.012) 0.125 (0.015) 0.183 (0.017) — 0.114 (0.011)

(b) Performance on dataset split by epitope groups.

Method MCC Precision Recall AUCROC F1
WALLE 0.152 (0.019) 0.207 (0.020) 0.299 (0.025) 0.596 (0.012) 0.204 (0.018)
EpiPred -0.006 (0.015) 0.089 (0.011) 0.158 (0.019) — 0.112 (0.014)
ESMFold 0.018 (0.010) 0.113 (0.019) 0.034 (0.007) — 0.046 (0.009)
ESMBind 0.002 (0.008) 0.082 (0.011) 0.076 (0.011) 0.500 (0.004) 0.064 (0.008)
MaSIF-site 0.046 (0.014) 0.164 (0.020) 0.174 (0.015) — 0.128 (0.012)

MCC: Matthews Correlation Coefficient; AUCROC: Area Under the Receiver Operating Characteristic Curve;
F1: F1 score. Standard errors are included in the parentheses. We omitted the results of EpiPred, ESMFold and
MaSIF-site for AUCROC. For EpiPred and ESMFold, the interface residues are determined from the predicted
structures by these methods such that the predicted values are binary and not comparable to other methods; As
for MaSIF-site, it outputs the probability of mesh vertices instead of node probabilities and epitopes are
determined as residues close to mesh vertices with probability greater than 0.7.

Table 2: Summary of Features Used in Benchmarking Methods.
Antibody Structure PLM Graph

WALLE ↭ ↭ ↭ ↭
EpiPred ↭ ↭ → ↭
ESMFold ↭ → ↭ →
MaSIF-site → ↭ → ↭
ESMBind → → ↭ →

Antibody: Antibody is taken into consideration when predicting epitope nodes;
Structure: Topological information from protein structures;

PLM: Representation from Protein Language Models;
Graph: Graph representation of protein structures.

Additionally, we benchmarked AlphaFold2-Multimer (AF2M) version 2.3 on the epitope prediction
task due to its growing use in complex structure prediction. A new subset of 76 AsEP complexes,
excluded from the AF2M training set, was curated for this purpose. Details on the filtering method,
the specific AsEP files in this subset, and AF2M performance results can be found in Appendix A.9
and Table S5. While AF2M achieves an MCC of 0.262, its performance could be further improved.
Additionally, the average runtime per antibody-antigen pair is 1.66 hours, which is not optimal for
epitope scanning, especially given that all other benchmarked methods here can make predictions
within seconds.
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Generalizing to novel epitopes needs improvement 



Summary

• Epitopes are important for antibody development


• Existing methods are either trained on a small dataset (less than 1K) or do not 
consider antibodies in prediction


• We proposed a new dataset with a maintenance plan to enrich novel antibody 
types and general protein-protein complexes


• We benchmarked representative methods and a hybrid method leveraging both 
PLMs and GNNs, which showed promising performance (3-10X better than 
existing methods)


• Further development will focus on improving generalizability to unseen epitopes 


