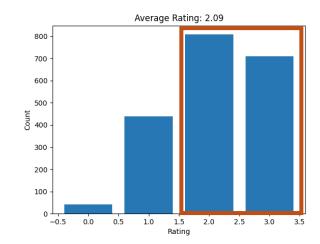


MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding

Xinyu Fang*, Kangrui Mao*, Haodong Duan†, Xiangyu Zhao, Yining Li, Dahua Lin, Kai Chen†

* Equal Contribution † Corresponding Author

Presenter: Xinyu Fang Nov, 2024


The Existing VideoQA benchmarks have following limitations:

- 1. **Short Videos**: Existing VideoQA datasets primarily consist of **short videos** (less than a minute), that deviate from the real application scenario.
- 2. Limited
 Capabilities: Current
 VideoQA
 benchmarks are
 limited to several
 basic video tasks.
- 3. Biased Evaluation: Our preliminary study indicates that GPT-3.5-based evaluation is less accurate and exhibits significant discrepancy relative to human preferences, diminishing the credibility of the evaluation results.

Low duration and shot numbers

Table 1: Comparing the statistics of MMBench-Video and other widely adopted VideoQA benchmarks. When reporting the video statistics, we follow the format of "mean value (standard deviation)".

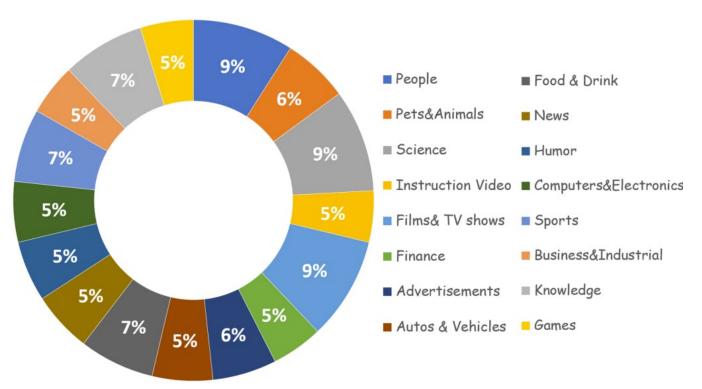
Benchmarks	QA pairs Generation	Number of Capabilities	Question Length mean(std) words	Answer Length mean(std) words	Video Duration mean(std) sec	Shot Number mean(std)
MSVD-QA [56]	Automatic	2	6.6(2.5)	1.0(0.0)	9.8(6.6)	2.4(3.4)
MSRVTT-QA [57]	Automatic	2	7.4(3.4)	1.0(0.0)	15.1(5.2)	3.4(2.9)
TGIF-QA [25]	Automatic/Human	4	9.7(2.3)	1.5(0.9)	3.7(2.0)	1.2(1.4)
ActivityNet-QA [62]	Human	3	8.9(2.4)	1.3(0.7)	111.5(66.1)	12.9(20.9)
MMBench-Video	Human	26	10.9(4.1)	8.4(7.7)	165.4(80.7)	32.6(33.5)

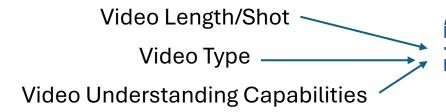
Great Bias In Judge

The project aims at designing a new VideoQA benchmark featuring the following characteristics:

- The benchmark needs to cover videos of multiple lengths and shots, mirroring practical use cases.
- 2. This benchmark needs to cover a wide range of capabilities related to video comprehension, with sufficient consideration of temporal.
- 3. The benchmark should be **evaluated based on more advanced LLMs** (like GPT-4 or Qwen).

Follow the MMBench, We design a taxonomy of multi-modal video understanding capabilities:


- The taxonomy features 3 capability levels and 26 fine-grained capabilities.
- 2. The two most fundamental L-1 capabilities are **perception** & **reasoning**.
- 3. Three additional L-2 capabilities: Hallucination, Commonsense Reasoning, Temporal Reasoning



Dataset collection and Quality Control:

Data Collection (follow 5 guidelines)

Five Guidelines:

- Each question should evaluate one or multiple leaf capabilities.
- You are encouraged to formulate temporal indispensable questions…
- **3. Avoid including specific timestamps** in the questions
- The questions should be free-form and exhibit linguistic diversified ..
- Please provide informative and detailed answers for each question

Cross Validation

Manually

LVLM-based

filtering mechanism

REPART UNIVERSITY

MMBench-Video Example:

GDP (Gross Domestic Product)

国内生产总值

How to Calculate GDP according to this video?

GDP = C + I + G + (X - M).

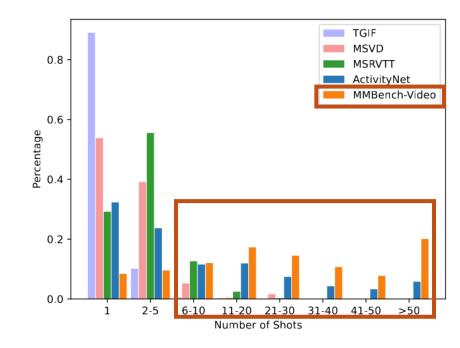
GDP equals the sum of consumption, private investment, government spending, and net exports.

How many financial terms does this video explain?

A total of 5 terms are discussed in the video.
Respectively GDP, GNP, GNI, CPI, and PPI.

What is this video mainly about?

This video explains some financial terms.


MMBench-Video highlight features:

Long-form, multi-shot video benchmarks

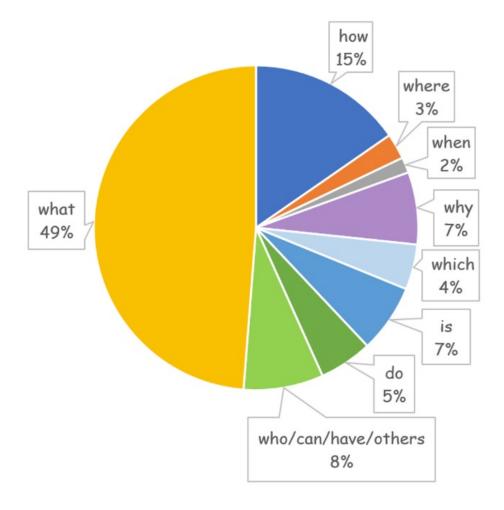
Table 1: Comparing the statistics of MMBench-Video and other widely adopted VideoQA benchmarks. When reporting the video statistics, we follow the format of "mean value (standard deviation)".

Benchmarks	QA pairs Generation	Number of Capabilities	Question Length mean(std) words	Answer Length mean(std) words	Video Duration mean(std) sec	Shot Number mean(std)
MSVD-QA [56]	Automatic	2	6.6(2.5)	1.0(0.0)	9.8(6.6)	2.4(3.4)
MSRVTT-QA [57]	Automatic	2	7.4(3.4)	1.0(0.0)	15.1(5.2)	3.4(2.9)
TGIF-QA [25]	Automatic/Human	4	9.7(2.3)	1.5(0.9)	3.7(2.0)	1.2(1.4)
ActivityNet-QA [62]	Human	3	8.9(2.4)	1.3(0.7)	111.5(66.1)	12.9(20.9)
MMBench-Video	Human	26	10.9(4.1)	8.4(7.7)	165.4 (80.7)	32.6 (33.5)

- boasts a substantially greater average duration than existing benchmarks.
- significantly surpasses all other benchmarks in average shot count.

Shot Number
Distribution
Comparison

DurationDistribution ofMMBench-Video



MMBench-Video highlight features:

- 2. Rich linguistic diversity
- 3. Comprehensive Capability Coverage in video understanding

MMBench-Video

MMBench-Video highlight features:

4. Adequate Temporal Indispensability

Benchmark	MS	VD	TGIF		MSF	RVTT	ActivityNet	
Input Frames	1	8	1	8	1	8	1	8
Original Score	2.62	2.93	2.66	3.18	2.01	2.33	2.65	3.05
Normalized Score	52.4	58.6	53.2	63.6	40.2	46.6	53.0	61.0
Score-[1f] / Score-[8f]	89.	 4%	80.5%		86.3%		87.0%	
Benchmark	EgoSo	chema	Video-	MME*	Next-GQA		MMBench-Video	
Input Frames	1	8	1	8	1	8	1	8
Original Score	0.65	0.70	0.54	0.68	0.78	0.84	0.78	1.63
Normalized Score	65.0	70.0	54.0	68.0	78.0	84.0	26.0	54.3
Score-[1f] / Score-[8f]	88.	6%	79.4%		92.9%		47.8%	

- Allow most videos for its content to be
 adequately represented by a single frame.
- 2. Many of the QAs are too simplistic

Exhibit Great
Temporal Importance
of MMBench-Video

Main Results (Oct. 2024)

W-1-1	Overall		1	Perceptio	n				Rea	soning		
Model	Mean	CP	FP-S	FP-C	HL	Mean	LR	R AR RR		CSR	TR	Mean
				LLMs								
GPT-40 [43]	0.25	0.03	0.11	0.07	1.82	0.16	0.39	0.55	0.32	0.30	0.55	0.45
Open-Source Video-LLMs												
Video-ChatGPT-[100f] [39]	0.93	0.91	0.94	0.81	0.39	0.90	0.70	1.15	1.12	0.84	0.94	0.97
Video-LLaVA-[8f] [34]	1.05	1.14	1.08	0.88	0.50	1.04	0.72	1.23	1.03	0.89	0.97	0.99
Chat-UniVi-[64f] [26]	0.99	1.07	1.00	0.93	0.39	0.98	0.59	1.18	1.14	0.75	0.98	0.97
LLaMA-VID-[1fps] [33]	1.08	1.30	1.09	0.93	0.42	1.09	0.71	1.21	1.08	0.83	1.04	1.02
VideoChat2-[16f] [32]	0.99	1.18	0.94	0.98	0.66	0.98	0.42	1.13	1.24	0.86	0.94	0.95
MiniGPT4-Video-[90f] [5]	0.70	0.76	0.55	0.54	1.44	0.62	0.62	1.03	1.05	0.62	0.82	0.85
MovieLLM-[1fps] [49]	0.87	0.95	0.82	0.70	0.15	0.81	0.52	1.12	1.22	0.54	1.05	0.97
PLLaVA-7B-[16f] [58]	1.03	1.08	1.06	0.86	0.52	1.02	0.64	1.25	1.17	0.98	1.01	1.03
ShareGPT4Video-8B-[16f*] [12]	1.05	1.20	1.05	1.00	0.32	1.04	0.89	1.06	1.19	1.01	0.99	1.03
VideoStreaming-[64f+] [46]	1.12	1.38	1.13	0.8	0.32	1.13	0.77	1.27	1.11	1.01	1.10	1.09
LLaVA-NeXT-Video-[32f] [64]	1.14	1.35	1.15	0.97	0.58	1.14	0.64	1.38	1.30	1.27	1.03	1.13

Full results shows on the OpenVLM Video Leaderboard.

		0	pen-Sour	re IVIA	As for In	noes						
Idefics2-8B-[1f] [28]	0.95	1.06	0.85	0.81	1.35	0.90	0.73	1.14	1.08	1.09	1.04	1.03
Idefics2-8B-[8f]	1.10	1.23	1.07	0.89	0.77	1.06	0.77	1.27	1.41	1.11	1.14	1.16
Qwen-VL-Chat-[1f] [6]	0.60	0.72	0.59	0.53	1.16	0.63	0.58	0.60	0.54	0.53	0.47	0.53
Owen-VL-Chat-[8f]	0.52	0.44	0.62	0.33	0.15	0.53	0.45	0.59	0.50	0.36	0.37	0.45
mPLUG-Owl2-[1f] [60]	0.85	1.05	0.79	0.79	0.68	0.83	0.54	1.06	1.05	0.74	0.83	0.86
mPLUG-Owl2-[8f]	1.15	1.34	1.18	0.99	0.27	1.15	0.63	1.33	1.30	1.03	1.11	1.11
InternVL-Chat-v1.5-[1f] [13]	0.84	0.98	0.72	0.78	1.44	0.80	0.57	1.02	1.12	0.83	0.88	0.90
InternVL-Chat-v1.5-[8f]	1.26	1.51	1.22	1.01	1.21	1.25	0.88	1.40	1.48	1.28	1.09	1.22
InternVL2-26B-[16f]	1.41	1.56	1.48	1.23	0.52	1.42	1.06	1.61	1.45	1.38	1.23	1.35
VILA1.5-13B-[14f] [35]	1.36	1.51	1.45	1.26	0.24	1.39	0.80	1.52	1.30	1.40	1.28	1.28
VILA1.5-40B-[14f]	1.61	1.78	1.72	1.35	0.47	1.63	1.12	1.78	1.61	1.48	1.45	1.52
Proprietary LVLMs for Images												
Claude-3v-Opus-[4f] [4]	1.19	1.37	1.11	1.00	1.56	1.16	1.12	1.35	1.36	1.17	1.05	1.20
Gemini-Pro-v1.0-[8f] [51]	1.49	1.72	1.50	1.28	0.79	1.49	1.02	1.66	1.58	1.59	1.40	1.45
Gemini-Pro-v1.0-[16f]	1.48	1.61	1.56	1.30	0.65	1.50	1.15	1.57	1.55	1.36	1.33	1.39
Gemini-Pro-v1.5-[8f] [51]	1.30	1.51	1.30	0.98	2.03	1.32	1.06	1.62	1.36	1.25	0.94	1.22
Gemini-Pro-v1.5-[16f]	1.60	1.81	1.59	1.60	2.00	1.61	1.58	1.77	1.69	1.80	1.24	1.55
Gemini-Pro-v1.5-[1fps]	1.94	1.99	2.04	1.70	1.90	1.98	1.98	2.02	1.92	1.78	1.63	1.86
GPT-4v-[8f] [42]	1.53	1.68	1.45	1.43	1.79	1.51	1.14	1.81	1.70	1.59	1.39	1.52
GPT-4v-[16f]	1.68	1.83	1.65	1.40	1.76	1.66	1.45	1.91	1.86	1.83	1.53	1.69
GPT-40-[1f] [43]	0.70	0.99	0.61	0.53	2.19	0.73	0.47	0.82	0.63	0.69	0.44	0.59
GPT-4o-[8f]	1.62	1.82	1.59	1.43	1.95	1.63	1.33	1.89	1.60	1.60	1.44	1.57
GPT-4o-[16f]	1.86	2.03	1.88	1.67	2.13	1.89	1.78	1.95	1.78	1.90	1.68	1.80
GPT-4o-[1fps]	2.15	2.23	2.24	2.01	1.90	2.19	2.11	2.12	2.17	1.94	1.97	2.08

Performance of Video-LLMs on Image VQA Benchmarks

Model				MMBen	ch						MMSta	r		
Model	FP-S	FP-C	CP	LR	AR	RR	Overall	CP	FP	IR	LR	Math	ST	Overall
	Video-LLM	s												
Video-ChatGPT	41.87	27.37	32.87	13.71	53.05	30.46	34.50	40.80	24.80	36.00	26.00	28.00	22.40	29.67
Video-LLaVA	57.44	42.46	62.98	14.52	68.90	43.10	52.32	55.20	20.40	37.60	25.20	25.60	24.00	31.33
Chat-UniVi	47.75	35.75	57.18	9.68	62.19	33.91	45.04	50.00	30.80	42.80	30.40	30.00	24.40	34.73
VideoChat2	42.91	30.72	54.14	7.26	54.88	32.18	41.02	47.60	22.80	32.80	27.20	26.40	13.20	28.33
PLLaVA-7B	59.17	40.78	60.50	17.74	58.54	58.05	52.79	53.60	34.40	40.80	32.40	30.00	17.20	34.73
					Open	-Source L	VLMs for Ima	ages						
MiniCPM-V-2	78.89	50.84	72.93	26.61	75.00	65.52	66.02	58.00	32.40	50.00	38.40	32.80	22.80	39.07
LLaVA-v1.5-7B	69.90	56.98	70.17	25.81	67.07	53.45	61.38	57.20	24.40	41.60	28.40	26.40	20.40	33.07
InternVL-Chat-v1.5	88.58	73.18	80.94	58.06	85.98	80.46	79.95	70.40	52.80	65.20	58.40	56.00	39.60	57.07
Idefics2-8B	81.31	65.36	73.20	41.94	80.49	76.44	72.29	66.00	42.40	61.60	49.60	40.00	37.20	49.47
Phi-3-Vision	78.89	61.45	76.80	47.58	79.27	74.14	72.29	60.00	38.80	59.20	45.20	42.40	40.80	47.73

Table 4: Comparison of Image Models and Video Models on MMBench and MMStar. We follow the official practice to perform evaluation on these two benchmarks. For MMBench, we report the results on MMBench-DEV-EN-v1.1. We adopt the abbreviations for capabilities that are defined in the original papers.

The Superior Performance of GPT-4 as a Judge

Judge Model	LVLM	Video-LLaVA	GPT-40
CDT 2.5 Tombo	1106	2.09	2.45
GPT-3.5-Turbo	0613	1.80	2.11
CDT 4 Tunks	1106	1.05	1.62
GPT-4-Turbo	0125	0.90	1.61
Qwen2-72B-In	nstruct	1.15	1.80

	LVLM	Video-LLaVA	GPT-40
Judge Model		VIGEO-LLA VA	GF 1-40
GPT-3.5-Turbo	1106	0.98	0.815
GF 1-3.3-10100	0613	0.89	0.685
GPT-4-Turbo	1106	0.36	0.295
GF 1-4-10F00	0125	0.36	0.255
Qwen2-72B-Ir	struct	0.41	0.320

Table 6: Evaluation results obtained with different GPT judges on MMBench-Video. The overall mean scores are reported.

Table 7: The mean absolute error (MAE) of different GPT Judges with human preferences on a randomly selected subset.

Thanks for your attention!

VLMEvalKit MM' 24

OpenVLM Video Leaderboard

Prism NeurlPS' 24

MMBench-Video NeurlPS' 24 D&B Track