

OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction

Hongbo Zhao*, Lue Fan*, Yuntao Chen*, Haochen Wang*, Yuran Yang*, Xiaojuan Jin, Yixin Zhang, Gaofeng Meng, Zhaoxiang Zhang

Paper:

Dataset:

Road map construction

Road map construction is fundamental to many tasks such as navigation and autonomous driving.

Background

Existing Benchmarks

- Ego View Map Construction
- Use cameras and radar to construct maps. (HDMapNet, MapTR, ...)
- Accurate but expensive.
- Satellite Map Construction
- Use satellite images to build maps. (RoadTracer, SPIN, ...)
- Cheap but inaccurate.

Background

□ Satellite Map Construction

- Coarse annotations: Semantic-level
- Low resolution: Inadequate for accurate perception of lane lines
- Small Scale: Less than 10k 1024 * 1024 images
- Unalignment with AD benchmarks

Dataset	# of Images*	Resolution	GT Source	Labeling Level	Region
Massachusetts [35]	2513	1.00 <i>m/pixel</i>	OSM	Semantic	America
CasNet [13]	77	1.20 m/pixel	Manually	Semantic	-
DeepGlobe [16]	8570	0.50 m/pixel	QGIS	Semantic	3 Counties
SpaceNet [43]	4481	0.31 <i>m/pixel</i>	OSM	Semantic	4 Counties
Roadtracer [6]	4800	0.60 <i>m/pixel</i>	OSM	Semantic	6 Counties
Ottawa [33]	235	0.30 <i>m/pixel</i>	Manually	Semantic	Canada
CHN6-CUG [48]	4511	0.50 m/pixel	Manually	Semantic	China
OpenSatMap (Ours)	7224 31696	0.30 m/pixel 0.15 m/pixel	Manually	Instance, Vectorized	60 Cities, 19 Countries

OpenSatMap: A Fine-grained High-resolution Satellite Dataset

OpenSatMap: Data Collection

(a) Landmark correspondences between a satellite
(b) Overlaying the driving trajectories from the nuScenes image and a nuScenes image.
(b) Overlaying the driving trajectories from the nuScenes dataset onto OpenSatMap (Boston Seaport).

2024/11/10

OpenSatMap: Annotation

2024/11/10

(a) Attribute change.

(b) Lines fork and merge.

OpenSatMap: Annotation

Image-level tag

(a) Flyover.

(b) Cross-river bridge.

(c) Roundabout

(d) Winding road.

(C) Kurai.

(a) Urban.

Figure 4: Special road structure examples.

Figure 3: Settlement type examples.

OpenSatMap: Statistics

Figure 5: Number of instances in each image in OpenSatMap19 (left) and OpenSatMap20 (right).

Figure 7: **Image-level tag distribution in Open-SatMap20.** CC = complete clear, PC = partially clear, Sp = sparse, M = moderate, D = dense, S = suburban, R = rural, U = urban, B = bridge, N = None, RA = roundabout, OP = overpass.

OpenSatMap: Statistics

(e) Bidirection distribution. (f) Boundary distribution. (g) Occlusion distribution. (h) Clearness distribution.

Senchmark: Instance-level Line Detection

Task Formulation

Senchmark: Instance-level Line Detection

DEvaluation Metrics

- Mask AP: The same as instance segmentation.
- Chamfer AP:
 - Chamfer distance: $D_{\text{Chamfer}}(\mathbf{p},\mathbf{q}) = \frac{1}{M} \sum_{i=1}^{M} \min_{j=1,2,\dots,K} d(p_i,q_j),$

Dataset	$AP_{0.9}^{C}$	$AP_{1.5}^{C}$	$AP_{3.0}^{\mathrm{C}}$	$AP_{4.5}^{C}$	$AP_{50:95}^{M}$	AP_{50}^{M}	AP_{75}^{M}	mIoU
OpenSatMap19	16.04±0.35	22.68±0.35	$26.88{\scriptstyle \pm 0.52}$	$29.18{\scriptstyle\pm0.22}$	3.66±0.15	10.66 ± 0.44	1.45±0.12	28.71±0.38
OpenSatMap20	20.30 ± 0.21	$25.93{\scriptstyle\pm 0.35}$	$29.50{\scriptstyle \pm 0.40}$	$31.38{\scriptstyle \pm 0.43}$	6.98±0.21	$16.05{\scriptstyle\pm 0.32}$	5.26 ± 0.13	$33.69{\scriptstyle \pm 0.45}$

***** Benchmark: Satellite-enhanced Online Map Construction

We leverage satellite images as an **additional input modality** to enhance online map construction methods.

	Method	Divider	Crossing	Boundary	All
_	HDMapNet [34] SatforHDMap [23]	40.6 50.2	18.7 53.2	39.5 49.4	32.9 50.9
2024/11/10	24/11/10				

13

Thanks

Dataset:

Project: