

Generative Al for Math MathPile: A Billion-Token-Scale Pre-training Corpus for Math

Zengzhi Wang^{1,3,4}, Xuefeng Li^{1,4}, Rui Xia³, Pengfei Liu^{1,2,4}

Presenter: Zengzhi Wang

Outline

- Background: Why this dataset?
- How to construct a pre-training corpus for math?
 - > data collection, filtering, cleaning, and deduplication
- Experimental Results: demonstrate the effectiveness of corpus and pipeline
- Takeaways

Historical Changes on Pre-training Corpora

High-quality, large-scale corpora are the cornerstone of building powerful LLMs

Books and Wikipedia (GPT, BERT); Web pages, e.g., reddit and Common Crawl, (GPT-2, T5);" CC, WebText, Books, Wikipedia (GPT-3) Pile (GPT-Neo..) MassiveText (Gopher) Web pages, Books, Wikipedia, News, Code, Social media conversations.. (PaLM) cholarships ROOTS (BLOOM) The Stack (StarCoder) RedPajama (a reproduction of LLaMA's corpora) SlimPajama, RedPajama v2 RefinedWeb, web-only, (Falcon..) ٠ Politics Dolma (web pages, code, Reddit, Semantic Scholoar, Books, Wiki) FineWeb (-edu) (web-only) DCLM-baseline (web-only)

Today, many LLMs, such as GPT-4, Mistral, Gemini, no longer provide pre-training data, even technical details.

Background: Pre-training Corpora for Math

At that time (in 2023), researchers mainly focus on math SFT due to the lack of math pre-training corpora and other factors.

Note that OpenWebMath (Paster et al., 2023) is conducting work concurrently with ours.

MathPile: Overview

MathPile: Data Processing Pipeline

- Step 1: Data collection from various sources
 - > with necessary preprocessing (cleaning, filtering)
- Step 2: Global Data Processing Pipeline
 - > Language Identification, Cleaning & Filtering, Deduplication, Decontamination

MathPile: Statistics

Components	Size (MB)	# Documents	# Tokens	max(# Tokens)	min (# Tokens)	ave (# Tokens)
Textbooks	644	3,979	187,194,060	1,634,015	256	47,046
Wikipedia	274	22,795	59,990,005	109,282	56	2,632
ProofWiki	23	23,839	7,608,526	6,762	25	319
CommonCrawl	2,560	75,142	615,371,126	367,558	57	8,189
StackExchange	1,331	433,751	253,021,062	125,475	28	583
arXiv	24,576	343,830	8,324,324,917	4,156,454	20	24,211
Total	29,408	903,336	9,447,509,696	-	-	10,458

Table 3: The components and data statistics of MATHPILE.

Continual Pre-training Experiments

- Base model: Mistral-7B-v0.1 (SOTA LLM at that time)
- Benchmarks:
 - Elemental Math: GSM8K, MMLU-Math
 - High-school: MATH, AGIEval-SAT-MATH, AQuA, MathQA;
 - College: MMLU-Math
- Few-shot Prompting Evaluation

The Effectiveness of MathPile

Table 4: Results on each subset of MATHPILE and sampled OpenWeb-Math. The numbers in parentheses represent the number of tokens trained. **Bold** results denote improvements over the original Mistral.

Models	GSM8K	MATH	SAT- MATH	MMLU- Math	MathQA	AQuA
Mistral-7B-v0.1	47.38	10.08	47.27	44.92	23.51	27.95
 + Textbooks (0.56B) + Wikipedia (0.18B) + StackExchange (0.87B) + Common Crawl (1.83B) + arXiv (0.38B) + Textbooks, Wikipeida, StackEx., CC (4B) 	48.97	12.10	56.36	48.93	30.38	33.07
	49.96	9.96	53.63	47.16	28.97	35.43
	43.06	11.66	47.27	43.51	27.67	30.70
	45.56	9.88	50.45	45.17	25.79	31.88
	47.91	7.50	42.72	46.34	18.05	27.55
	49.88	11.70	43.18	43.75	23.24	25.19
+ AMPS (1B)	0.08	0.82	3.18	0.47	10.99	8.27
+ DM-Mathematics (5B)	0.00	0.00	0.00	0.00	0.00	0.00
+ Sampled OpenWebMath (0.59B)	43.21	7.86	47.72	47.52	21.80	24.80

The Effectiveness of Data Processing Pipeline

- Taking Wikipedia as an example
- ablation on two decisions:

\succ	perform (# Abhyankar's inequality
		Abhyankar's inequality is an inequality involving extensions of valued fields in algebra, introduced by Abhyankar (1956).
\triangleright	fix LaTeX	Abhyankar's inequality states that for an extension $K_/ k_o$ of valued fields, the transcendence degree of $K_/ k_o$ is at least the transcendence degree of the residue field extension plus the rank of the quotient of the valuation groups; here the rank of an abelian group A {\displaystyle A} A is defined as dim Q (A \otimes Q) {\displaystyle \dim _{\mathbb {Q} }(A\otimes \mathbb {Q}) } (\displaystyle \\dim _{\mathbb {Q} }) {\displaystyle \\dim _{\mathbb {Q} })}
		## References
		* Abhyankar, Shreeram (1956), "On the valuations centered in a local domain", _American Journal of Mathematics_ , **78** (2): 321–348, doi:10.2307/2372519, ISSN 0002-9327, JSTOR 2372519, MR 0082477
		# Abhyankar's inequality
		Abhyankar's inequality is an inequality involving extensions of valued fields in algebra, introduced by Abhyankar (1956).
		Abhyankar's inequality states that for an extension \$K / k\$ of valued fields, the transcendence degree of \$K / k\$ is at least the transcendence degree of the residue field extension plus the rank of the quotient of the valuation groups; here the rank of an abelian group \$A\$ is defined as \$\dim _{\mathbf{Q}} (A\otimes \mathbf{Q}) \$.
		## References
		* Abhyankar, Shreeram (1956), "On the valuations centered in a local domain", _American Journal of Mathematics_ , **78** (2): 321–348, doi:10.2307/2372519, ISSN 0002-9327, JSTOR 2372519, MR 0082477

The Effectiveness of Data Processing Pipeline

Table 5:	Ablation	study o	n data p	rocessing	pipeline	and LaTe	eX displa	y issue resolution
			1	0	L L		-	5

Models	Global Data Processing	Fix Latex Display Issue	GSM8K	MATH	SAT- MATH	MMLU- MATH	MathQA	AQuA
Mistral-v0.1-7B	-	-	47.38	10.08	47.27	44.92	23.51	27.95
 + Sampled raw Wikipedia (0.55B) + Full raw Wikipedia (2.18B) + Full cleaned but LaTeX issued Wikipedia (0.23B) 	× × ✓	× × ×	41.92 32.30 47.15	6.28 4.48 8.58	20.90 13.64 46.81	23.70 25.59 42.92	24.72 27.04 21.00	24.01 23.62 31.88
+ Full cleaned Wikipedia (0.18B)	1	1	49.96	9.96	53.63	47.16	28.97	35.43

Takeaways

- MathPile, a 9.5B tokens corpus for math domain, with diverse sources, covering textbooks, scientific papers, web pages, Community QA, and wiki.
- This corpus have been used in many studies so far, usage including but not limited to pre-training, data synthesis and benchmarking.
- Some limitations:
 - only focus on English
 - many decisions were made empirically, not always optimal.
 - without employing model-based data filtering to improve quality.
 - subset like common crawl could be expanded.

Thanks

- Paper: https://huggingface.co/papers/2312.17120
- Github: https://github.com/GAIR-NLP/MathPile/
- Dataset (Research-only): https://huggingface.co/datasets/GAIR/MathPile
- Dataset (Commercial use): https://huggingface.co/datasets/GAIR/MathPile_Commercial

feel free to email me: zzwang.nlp@gmail.com