

Defining the Gold Standard in Small Molecule Drug Discovery Benchmarking

* Equal Contribution

¹Vanderbilt University, ²Amherst College, ³University of Oregon, ⁴MD Anderson Cancer Center, ⁵Leipzig University

Current Issues

1. Inconsistent Representations HO ___O HO e.g. from MoleculeNet's BBBP dataset \cap aspirin ID acetylsalicylate 2. Noisy Data Labels CC(=O)Oc1ccccc1C(O)=O SMILES C1=CC=CC(=C1C(O)=O)OC(C)=O Label 0 1 Evaluation 1. Variation in Featurization 0 0 1 0 \mathbb{C} e.g. 0.8 2.6 0.1 2.5 2. Variation in 3D Conformations See more issues listed in our paper e.g.

Multiple filters (e.g., duplicate) are in the curation pipeline as well

We encourage the researchers to innovate on featurization and generate conformations.

WelQrate Dataset Collection Statistics

Target Class	BioAssay ID (AID)	Target	Compound Type	Number of Compounds	Number of Actives	Percent Active	Unique BM Scaffolds
G Protein-Coupled Receptor (GPCR)	435008*	Orexin 1 Receptor	Antagonist	307,660	176	0.057%	86,108
	1798	M1 Muscarinic Receptor	Allosteric Agonist	60,706	164	0.270%	30,079
	435034	M1 Muscarinic Receptor	Allosteric Antagonist	60,359	78	0.129%	39,909
Ion Channel	1843	Potassium Ion Channel Kir2.1	Inhibitor	288,277	155	0.054%	82,140C
	2258	KCNQ2 Potassium Channel	Potentiator	289,068	247	0.085%	82,247
	463087	Cav3 T-type Calcium Channel	Inhibitor	95,650	652	0.682%	40,066
Transporter	488997*	Choline Transporter	Inhibitor	288,564	236	0.082%	82,343
Kinase	2689*	Serine Threonine Kinase 33	Inhibitor	304,475	120	0.039%	85,314
Enzyme	485290	Tyrosyl-DNA Phosphodiesterase	Inhibitor	281,146	586	0.208%	80,984

* Indicates additional experimental measurements are available.

Features of the Dataset Collection

- **Diverse** important therapeutic target classes
- Large number of molecules
- High quality label
- **Realistic** label imbalance

logAUC_[0.001, 0.1]

Logarithmic Receiver-Operating-Characteristic Area Under the Curve with the False Positive Rate in the Range [0.001, 0.1]

BEDROC

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic

EF₁₀₀

Enrichment Factor with Cutoff 100

DCG₁₀₀

Discounted Cumulative Gain with Cutoff 100

More metrics with real-world considerations are encouraged

Each Scheme Provides Five Different Splits Per Dataset The Reported Performance Should Be Averaged From the Five Splits to Ensure the Evaluation Robustness

Benchmarking

- RQ1: How Do Different Models And Data Representation Affect Performance?
- RQ2: How Does Datasets Quality Impact Model Evaluation?
- **RQ3**: How Significant Is Featurization in Model Evaluation?
- **RQ4**: How Do Different Models Perform Under Scaffold Splitting?

Results for RQ1 & RQ2

www.WelQrate.org

Datasets – High Quality

Evaluation Metrics - Realistic

Data Split – Robust

