

VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark

Han Huang^{*}, Haitian Zhong^{*}, Tao Yu, Qiang Liu[†], Shu Wu, Liang Wang, Tieniu Tan

New Laboratory of Pattern Recognition (NLPR), CASIA

- Why do we need knowledge editing?
 - The model has learned knowledge that is undesirable, such as outdated knowledge, biases, privacysensitive data, etc.
- Problem definition:
 - Efficiently change the model's output for specific knowledge to the desired response without retraining the entire model and affecting results for other inputs.

Left Image: *Editing Large Language Models: Problems, Methods, and Opportunities.* Yunzhi Yao et al. Right Image: *Can We Edit Multimodal Large Language Models?* Siyuan Cheng et al.

Reliability:

• Success rate in producing the correct output for the edited content.

Generality:

• Generalize within the scope of the edit, for instance, in handling rephrased questions or similar images under the same entity.

Locality:

• Ensuring the editing succeeds without impacting unrelated knowledge.

Portability:

• Ability to apply edited knowledge to questions associated with that knowledge.

Limitations of existing benchmark:

- Synthetic images in testing do not match the questions and answers
- Lack of portability evaluation

Synthetic image

Q: How many fruits are on the plate? A: 7

Synthetic image

a photo of _____ white ornate seat in nicely decorated room with television.

2024/11/12

• Single editing and Sequential editing

- Knowledge Editing Methods
 - Keep original parameter: IKE, SERAC
 - Update model parameter: FT, MEND, KE
- Tested LVLMs

Table 6: LVLM	versions in e	experiments.	(Vis.:	Vision Encode	er)
		L			

LVLM	BLIP2-OPT	MiniGPT-4	LLaVA-1.5	mPLUG-Owl2	Qwen-VL
LLM	OPT-2.7B	Vicuna-7B	Vicuna-7B-v1.5	LLaMA-2-7B	Qwen-7B
Vis.	ViT-g (1B)	ViT-g (1B)	ViT-L (0.3B)	ViT-L (0.3B)	ViT-G (1.9B)

Experiment Results - Single Editing

Reliability and generality are both high

- Memory-based method stores only one piece of new knowledge
- The parameter update methods adapt well to single pieces of new knowledge

Differences in textual and visual locality tests

- Memory-based method has stronger impact on visual locality
- The parameter update methods also influence the expression of unrelated knowledge

Portability is generally poor

- The effect of current knowledge editing is generally unsatisfactory
- The model struggles to effectively utilize edited knowledge

Table 2: The single editing results of various editing methods applied to different LVLMs. (Rel.: Reliability; T/I-Gen.: Text/Image Generality; T/I-Loc.: Text/Image Locality; Port.: Portability)

Model	Method	Rel.↑	T-Gen. ↑	I-Gen.↑	T-Loc. ↑	I-Loc.↑	Port. ↑
BLIP2-OPT (~ 3.8 B)	FT (LLM)	99.75	99.08	98.95	71.10	19.90	17.13
	FT (Vis)	99.33	96.68	99.13	99.99	5.30	27.22
	KE	94.45	92.40	93.34	64.13	12.22	34.73
	IKE	99.47	99.40	99.56	70.11	10.26	44.22
	SERAC	96.02	95.99	96.01	100.0	2.40	15.25
	MEND	98.52	98.42	98.47	99.34	89.05	28.80
MiniGPT-4 (~ 7.8 B)	FT (LLM)	99.60	98.72	98.10	90.17	35.39	27.13
	FT (Vis)	100.0	84.89	99.19	99.99	20.26	37.06
	KE	98.47	97.89	98.11	75.47	16.14	48.06
	IKE	99.98	99.68	99.98	59.25	9.73	54.30
	SERAC	99.37	97.30	99.29	99.93	4.54	49.22
	MEND	99.20	98.98	99.15	99.46	92.67	40.09
LLaVA-1.5 (~ 7 B)	FT (LLM)	99.59	99.43	99.31	86.34	29.24	30.23
	FT (Vis)	99.80	99.12	97.55	99.99	18.79	54.43
	KE	99.07	97.59	98.65	77.36	15.25	48.62
	IKE	99.99	99.66	100.0	68.65	14.25	63.33
	SERAC	99.93	99.78	99.93	99.98	1.91	45.03
	MEND	99.54	99.21	99.52	99.36	90.14	40.39
Qwen-VL (~ 9.7 B)	FT (LLM)	97.92	96.30	95.48	72.80	37.23	16.15
	FT (Vis)	100.0	95.27	62.28	100.0	14.14	30.61
	KE	98.71	98.70	98.26	72.09	52.63	42.10
	IKE	99.01	98.85	99.01	57.97	10.48	57.99
	SERAC	97.62	95.68	97.84	99.85	0.81	38.22
	MEND	99.54	99.36	97.76	97.75	78.65	32.35
mPLUG-Owl2 (~ 8.2 B)	FT (LLM)	99.21	95.72	99.39	71.42	34.31	42.77
	FT (Vis)	97.24	96.36	82.39	99.99	50.14	74.09
	KE	89.10	88.37	88.62	55.80	21.07	46.82
	IKE	99.98	99.93	100.0	64.88	16.59	64.83
	SERAC	99.03	97.73	98.99	99.97	1.32	48.52
	MEND	98.65	98.15	94.26	99.56	90.47	37.68

• Multi-hop Portability: Performance decreases as the number of hops increases

Figure 3: Relative change (compared with unedited base model) of Multi-hop Portability results.

• Adding one-hop knowledge edits leads to improvements across the board.

New effective methods are still needed.

- Some editing methods are inapplicable (IKE, KE)
- Certain parameter update methods cause model collapse (MEND)
- In memory-based methods, as the amount of stored memory grows, performance declines due to limitations in retrieval methods.
- The parameter update methods result in forgetting and degrade model performance.

Current editing methods have limitations

(a) Average Reliability

(d) Average Text Locality

(b) Average Text Generality

(e) Average Image Locality

(c) Average Image Generality

(f) Average Portability 1-hop

Direct LVLM Editing

• These methods are adapted from LLM and are not specifically designed for LVLMs. Research could explore direct LVLM editing methods to address this gap.

Sequential Editing in LVLM

• We have observed performance degradation across methods in sequential editing, future work on LVLM editing should focus on mitigating these issues.

Portability Evaluation

• Future research should further emphasize Portability as an important aspect.