

Motivation

Existing Problems:

We found the **dataset** (both train and test) can be the "primary culprit" of the limited detection model's generalization performance in the real world.

- (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery and entire face synthesis. Most existing datasets only contain partial types of them;
- (2) forgery realism: The dominated training dataset, FF++, contains outof-date forgery techniques from the past four years, making it difficult to guarantee effective detection toward nowadays' SoTA deepfakes;
- (3) evaluation protocol: Most detection works perform evaluations on one type, e.g., training and testing on face-swapping types only, which hinders the development of universal deepfake detectors.

Contribution

- 1. We propose a new **highly diverse dataset called DF40** for generalizable deepfake detection, with 40 distinct deepfake techniques involved.
- 2. We propose a **comprehensive benchmark** for thorough evaluations and in-depth analysis, leading to 7 new insightful findings and 4 new open questions to the field.

DF40: Toward Next-Generation Deepfake Detection

Zhiyuan Yan¹, Taiping Yao^{2†}, Shen Chen², Yandan Zhao², Xinghe Fu², Junwei Zhu², Donghao Luo², Chengjie Wang², Shouhong Ding², Yunsheng Wu², Li Yuan^{1†}

Dataset, Benchmark, codebase, pre-training weights are released at : https://github.com/YZY-stack/DF40

Main Evaluation of four standard Protocols

Training Sat	Model	Testing Set (FF)				Training Set	Model	Testing Set (CDF)			
Training Set		FS (FF)	FR (FF)	EFS (FF)	Avg. (FF)	framing Set	Widdei	FS (CDF)	FR (CDF)	EFS (CDF)	Avg. (CD
	Xception [12]	0.991	0.892	0.810	0.898		Xception [12]	0.922	0.657	0.642	0.740
	CLIP [57]	0.996	0.908	0.837	0.914		CLIP [57]	0.967	0.744	0.730	0.814
ES (EE)	SRM [48]	0.988	0.867	0.703	0.853	ES (EE)	SRM [48]	0.919	0.621	0.603	0.714
ГЗ (ГГ)	SPSL [44]	0.987	0.849	0.735	0.857	ГЗ (ГГ)	SPSL [44]	0.938	0.656	0.648	0.747
	RECCE [6]	0.991	0.855	0.758	0.868		RECCE [6]	0.926	0.632	0.610	0.723
	RFM [75]	0.992	0.884	0.821	0.899		RFM [75]	0.939	0.637	0.628	0.735
	Xception [12]	0.838	0.996	0.670	0.835		Xception [12]	0.481	0.857	0.369	0.569
	CLIP [57]	0.932	0.999	0.798	0.910	FR (FF)	CLIP [57]	0.638	0.933	0.209	0.593
ED (EE)	SRM [48]	0.893	0.998	0.698	0.863		SRM [48]	0.454	0.869	0.326	0.550
ГК (ГГ)	SPSL [44]	0.901	0.998	0.695	0.865		SPSL [44]	0.479	0.852	0.256	0.529
	RECCE [6]	0.865	0.997	0.716	0.859		RECCE [6]	0.452	0.881	0.332	0.555
	RFM [75]	0.892	0.999	0.776	0.889		RFM [75]	0.492	0.882	0.359	0.578
	Xception [12]	0.665	0.807	0.999	0.824		Xception [12]	0.586	0.594	0.983	0.721
	CLIP [57]	0.688	0.889	0.999	0.859		CLIP [57]	0.617	0.735	0.988	0.780
EES (EE)	SRM [48]	0.596	0.776	0.999	0.790	EES (EE)	SRM [48]	0.589	0.620	0.964	0.724
EFS (FF)	SPSL [44]	0.659	0.811	0.999	0.823	ЕГЗ (ГГ)	SPSL [44]	0.635	0.651	0.975	0.754
	RECCE [6]	0.691	0.801	0.999	0.830		RECCE [6]	0.623	0.603	0.984	0.737
	RFM [75]	0.653	0.795	0.999	0.816		RFM [75]	0.644	0.666	0.981	0.764
BI (FF)	SBI [65]	0.810	0.714	0.678	0.734	BI (FF)	SBI [65]	0.679	0.609	0.723	0.670
	Prot	ocol-	-3: C	ross i	method	and Cro	oss data	eval	uatio	1	

Training Set	Model		Testing Set											
Training Set	Widdei	DeepFaceLab (①)	HeyGen (2)	MidJourney-6 (3)	Whichisreal (3)	StarGAN (4)	StarGAN2 (4)	StyleCLIP (e4e (🛛)	CollabDiff (Avg.			
FS (FF)	Xception [12]	0.882	0.394	0.384	0.535	0.577	0.616	0.426	0.553	0.546	0.546			
	CLIP [57]	0.930	0.539	0.540	0.439	0.896	0.746	0.730	0.738	0.674	0.692			
	SRM [48]	0.866	0.473	0.298	0.538	0.606	0.617	0.572	0.410	0.699	0.564			
	SPSL [44]	0.930	0.370	0.414	0.557	0.559	0.590	0.536	0.574	0.584	0.565			
	RECCE [6]	0.899	0.537	0.293	0.509	0.580	0.599	0.399	0.520	0.492	0.536			
	RFM [75]	0.918	0.719	0.286	0.496	0.652	0.570	0.705	0.689	0.798	0.648			
	Xception [12]	0.705	0.473	0.459	0.323	0.492	0.456	0.006	0.175	0.050	0.349			
	CLIP [57]	0.845	0.614	0.632	0.466	0.762	0.436	0.298	0.631	0.611	0.588			
ED (EE)	SRM [48]	0.786	0.604	0.510	0.357	0.473	0.434	0.044	0.428	0.080	0.413			
ГК (ГГ)	SPSL [44]	0.704	0.543	0.446	0.272	0.348	0.423	0.002	0.585	0.060	0.376			
	RECCE [6]	0.724	0.576	0.314	0.278	0.529	0.374	0.005	0.177	0.060	0.337			
	RFM [75]	0.739	0.588	0.511	0.325	0.407	0.423	0.009	0.201	0.030	0.360			
	Xception [12]	0.497	0.325	0.472	0.772	0.777	0.677	0.984	0.611	0.997	0.679			
	CLIP [57]	0.745	0.506	0.534	0.828	0.946	0.823	0.929	0.923	0.983	0.802			
EES (EE)	SRM [48]	0.527	0.358	0.338	0.794	0.769	0.703	0.982	0.509	0.997	0.664			
ЕГЗ (ГГ)	SPSL [44]	0.641	0.383	0.427	0.694	0.699	0.723	0.922	0.602	0.967	0.673			
	RECCE [6]	0.583	0.505	0.442	0.753	0.769	0.724	0.964	0.643	0.979	0.707			
	RFM [75]	0.619	0.349	0.551	0.623	0.730	0.636	0.966	0.665	0.979	0.680			
BI (FF)	SBI [65]	0.764	0.402	0.342	0.426	0.591	0.586	0.564	0.379	0.570	0.514			

Protocol-4: One-Verse-All (OvA) evaluation

Same Data Domain (H₁)

Protocol-1: Cross method evaluation Protocol-2: Cross domain evaluation

Cross Data Domain (H₂)

t-SNE analysis for CLIP and Xception

(a). Xception

Same Domain.

				C			_					
Training Set	Model	Testing Set										
framing Set	widdei	ADM	BigGAN	GLide	MidJourney	SD-v4	SD-v5	Vqdm	Wukong	Avg.		
	Xception	0.723	0.529	0.514	0.558	0.490	0.494	0.469	0.505	0.535		
DF40 (FF)	CLIP-base	0.940	0.850	0.666	0.447	0.494	0.494	0.682	0.542	0.639		
	CLIP-large	0.911	0.967	0.736	0.571	0.630	0.614	0.882	0.660	0.746		

Is super-resolution deepfake?

Test / Train		FS		FR	E	FE		
icst / ffam	FSGAN	BlendFace	LIA	Wav2Lip	DiT	DDIM	e4e	
SRI	0.772	0.835	0.746	0.564	0.687	0.713	0.543	
SRI + Super-Resolution	0.983	0.825	0.988	0.833	0.997	0.946	0.978	

Logits and confidence analysis

Cross Domain. Cross Method

Generalizing non-face deepfakes

Frequency analysis

Email and contact us

yanzhiyuan1114@gmail.com

• zhiyuanyan@stu.pku.edu.cn