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BiVLC: Bidirectional Vision-Language Compositionality 
dataset
BiVLC is a Bidirectional Vision-Language Compositionality dataset with almost 3k 
instances formed by 2 images and 2 captions.
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Findings

Finding 1: Current models underperform 
on text-to-image 

retrieval.
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Findings

Finding 2: The gap to humans is 
bigger in BiVLC than in SugarCrepe
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Findings

Finding 3: SugarCrepe and BiVLC 
performance are not correlated
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Exploring training strategies

We propose two new models based on the two main strategies in the literature to improve 
the VLC skills of a multimodal model: 

1. CLIPTROHN-TEXT using hard negative texts for training.

2. CLIPTROHN-IMG using both, hard negative texts and images.
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Exploring training strategies

TROHN-Text has 10 times more hard 
negative texts
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Exploring training strategies

VQAScore-XL Group score 70.20
3B vs 151M parameters for CLIP
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Further analysis

- Why does training with hard negative images help?
- Which category is the most difficult?
- Why is CLIPTROHN-IMG still far from humans?
- Are our models just distinguishing between synthetic and natural?
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Thank you!

● Project page: https://imirandam.github.io/BiVLC_project_page
● Github: https://github.com/IMirandaM/BiVLC
● Dataset: https://huggingface.co/datasets/imirandam/BiVLC
● Contact

○ by email {imanol.miranda, ander.salaberria, e.agirre, gorka.azcune}@ehu.eus
○ X @I_MirandaM @AnderSala @eagirre @gazkune

https://imirandam.github.io/BiVLC_project_page/
https://github.com/IMirandaM/BiVLC
https://huggingface.co/datasets/imirandam/BiVLC
https://x.com/I_MirandaM
https://x.com/AnderSala
https://x.com/eagirre
https://x.com/gazkune

