

2024 Datasets and Benchmarks Track

A benchmark for prediction of transcriptomic responses to chemical perturbations across cell types

Artur Szałata* · Andrew Benz* · Robrecht Cannoodt · Mauricio Cortes · Jason Fong · Sunil Kuppasani · Richard Lieberman · Tianyu Liu · Javier Mas-Rosario · Rico Meinl · Jalil Nourisa · Jared Tumiel · Tin M. Tunjic · Mengbo Wang · Noah Weber · Hongyu Zhao · Benedict Anchang · Fabian J. Theis+ · Malte D. Luecken+ · Daniel Burkhardt+

openproblems.bio/results/perturbation_prediction

Open Problems in Single-Cell Analysis

Chan Zuckerberg Initiative %

Single-cell RNA sequencing has the potential to unlock novel treatments for complex diseases

- Identification of transitions from disease to healthy cell states
- This information can be used for drug screening (inducing disease-to-healthy transitions)
- This could treat complex diseases that involve multiple biological pathways

[1] Adapted from: Dann, Emma, et al. "Precise identification of cell states altered in disease using healthy single-cell references." Nature Genetics (2023)

Perturbation prediction makes screening compounds against a change in gene expression tractable

- Goal: understand how chemical perturbations impact gene expression
- Challenge: biological and chemical space are both very large
- Solution: measure a fraction of possible perturbations and infer the rest
- However, existing perturbation datasets are limited by size and data quality issues

A new single-cell dataset: 146 drug perturbations in human peripheral blood cells from 3 donors with 4 distinct cell types

We developed a robust benchmark around this new dataset

- Task: predict perturbation effects for held out (cell type, compound) pairs
- Perturbation effects are derived from a generalized linear model contrasting treatment and control conditions
- p-value: probability that observed effects in treatment vs. control are random
- fold-change: magnitude of effect difference between treatment and control

Perturbation representation

- Perturbation effect is measured with a generalized linear model
- We propose cross-donor retrieval to evaluate the representation of perturbation effects
- Best representation: $-\log_{10}(p\text{-value}) \times \operatorname{sign}(\log fold \ change)$

[1] https://hbctraining.github.io/DGE_workshop_salmon_online/lessons/04a_design_formulas.html

Competition on Kaggle based on this benchmark

- Sourcing effective models for perturbation prediction from Kaggle competitors
- Improving dataset and benchmark based on competitor feedback

••	k Open Problems – Single-C	el x +	•
← -	A C S kaggle.com/comp	etitions/open-problems-single-cell-perturbations/overview	🖹 B 🗅 🗏 🛃 🤌 Finish update 🗄
=	kaggle	Q Search	Sign In Register
+	Create	OPEN PROBLEMS IN SINGLE-CELL ANALYSIS - FEATURED PREDICTION COMPETITION - A YEAR AGO	Late Submission ····
Ø	Home		
Φ	Competitions	Open Problems – Single-Cell Perturbations	
	Datasets	Predict how small molecules change gene expression in different cell types	
*	Models		
$\langle \rangle$	Code	Quantinu Data Cada Madala Discussion Landerboard Bulan	
	Discussions	CVerview Data Code Woders Discussion LeaderDoard Rules	
ଡ	Learn	Overview	Competition Host
~	More	The goal of this competition is to predict how small molecules change gene expression in different cell types.	Open Problems in Single-Cell Analysis
		Your work will help develop methods to predict how cells respond to small molecule drug perturbations, which could	Prizes & Awards
		have important applications in drug discovery and basic biology.	\$100,000 Awards Points & Medals
		Start Clase	Participation
		Sep 12, 2023 Nov 30, 2023	6,641 Entrants
		• • •	1,318 Participants 1,097 Teams
		Merger & Entry	25,529 Submissions
Ē	View Active Events		Tags
	VIEW AGINE EVENIS	Description G A	Genetics Biotechnology

A new benchmarking platform: Open Problems Perturbation Prediction (OP3)

- Top models from Kaggle competition were implemented for benchmark
- Dataset bootstrapping to assess robustness
- Key findings:
 - simple models tend to outperform more complex ones
 - drugs with larger effects are more difficult to predict correctly

Glossary: Mean Rowwise (MR), Root Mean Squared Error (RMSE), Differentially Expressed Genes (DEGs)

The OP3 benchmarking platform is a first step towards developing successful perturbation prediction models

- Best model predictions are still far from ground truth
- New methods can easily be added to the benchmarking platform via GitHub PRs
- More data is clearly needed, especially for the task of extrapolating across unseen chemical structures

Acknowledgements

Chan Zuckerberg Initiative 😚

kaggle

kaggle competitors

HELMHOLTZ OLDEN LABS" MUNICI)

NIH

PURDUE

UNIVERSITY

Open Problems in **Single-Cell Analysis**