

SolarCube: An Integrative Benchmark Dataset Harnessing Satellite and In-situ Observations for Large-scale Solar Energy Forecasting

Ruohan Li, Yinqun Xie, Xiaowei Jia, Dongdong Wang, Yanhua Li, Yingxue Zhang, Zhihao Wang, Zhili Li

Background

Renewables generation by source Terawatt-hours Solar Wind Other

3500

Increasing use of solar energy:

Photovoltaic (PV) generation has nearly tripled over the last half decade, increasing from 304.3 GW in 2016 to 760.4 GW in 2020, and is projected to 4,240 GW by 2040 (EIA, 2021).

Highly fluctuated and hard to forecast: a disruption in dense and fragmented cloud cover can lead to a significant surge, up to $700 W/m^2$ within a 30-min timeframe (Miller et al., 2018)

SolarCube Composition

	Variable	Source	S. Res.	T. Res.
Area-based variables				
	0.47µm visible channel of GOES-16 and Himawari-8 (vis047)	GeoNEX	5km	15min
	0.86µm visible channel of GOES-16 and Himawari-8 (vis086)	GeoNEX	5km	15min
	13.3µm infrared channel of GOES-16 and Himawari-8 (ir133)	GeoNEX	5km	15min
	Solar Zenith Angle (sza)	GeoNEX	5km	15min
	Satellited derived Solar Radiation (ssr)	-	5km	15min
	Cloud Mask (cm)	NOAA & EUMETSAT NWC SAF	5km	15min
Point-based variables				
	Ground-measured solar radiation	SURFRAD, BSRN	point	1min
	Land surface types	MODIS	point	static
	Elevation	GTOPO30	point	static

Ground-measured Solar Radiation

Higher accuracy of SolarCube -Physics-derived Solar Radiation data

- Used the same algorithm as NASA official products
 - MODIS (MCD18),
 - VIIRS (VNP18),
 - Geostationary Platforms (GeoNEX DSR/PAR)
- First image scale solar radiation data at a 15minute temporal resolution with high accuracy
- Higher accuracy than ECMWF Reanalysis v5 (ERA5)

Task

Task 1: Area-based Forecasting

• Short term, time step=12

Task 2: Point-based Forecasting

- Short term, time step=12
- Long term, time step=96

0

Python package

Users can customize

- Input and output variables and types
- Input and output time lengths
- Splitting strategies of training and testing sites

🛱 README 🛛 🕸 MIT license

SolarCube

The SolarCube dataset is a collection of temporally and spatially aligned image-based satellite data and point-based insitu data for solar energy forecasting.

This repo contains some code and examples for working with the SolarCube dataset.

- Viewing some samples of SolarCube
- Data Loader of SolarCube
- Data Generator of SolarCube

https://github.com/Ruohan-Li/SolarCube

Why SolarCube?

• First-of-its-kind dataset

Multi-source, high-resolution, near-global coverage for solar energy forecasting

• Versatile applications

Supports point-based, image-based, and multi-modal forecasting tasks

• User-friendly tools

Includes a Python package for seamless integration and ease of use.

Data: <u>https://doi.org/10.5281/zenodo.11498739</u> Code: <u>https://github.com/Ruohan-Li/SolarCube</u>