

dopanim: A Dataset of Doppelganger Animals with Noisy Annotations from Multiple Humans

Marek Herde, Denis Huseljic, Lukas Rauch, and Bernhard Sick marek.herde@uni-kassel.de

Intelligent Embedded Systems, University of Kassel, Germany

November 13, 2024

Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).

Task Data

Task:
Classify the animal shown in the image.

Annotation Data

Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).

Task Data

Task:
Classify the animal shown in the image.

Metadata:

Medium Interest
in Zoology

Metadata:

Low Interest
in Zoology

Annotation Data

Metadata: High Interest in Zoology

Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).

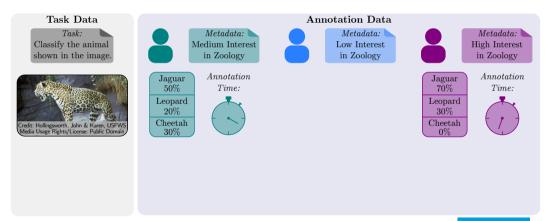
Task Data

Task:
Classify the animal shown in the image.

Medium Interest in Zoology

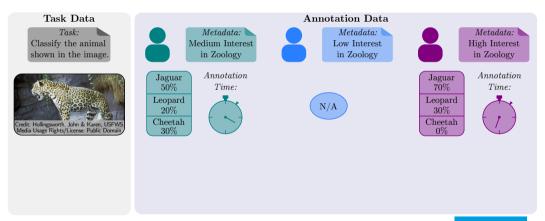
Annotation Data

Metadata:
Low Interest
in Zoology

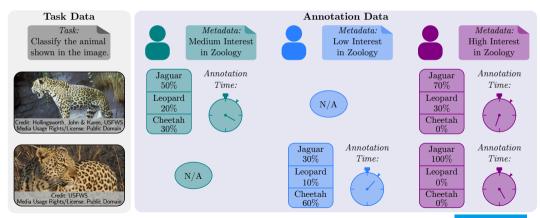


Metadata: High Interest in Zoology

Jaguar 70% Leopard 30% Cheetah 0%



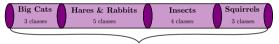
Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).



Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).

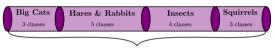
Objective: Collect a dataset for research purposes containing different data types that can be collected during annotation campaigns with error-prone, human annotators (e.g., crowdworkers).

dopanim: A Dataset of Doppelganger Animals Task Data

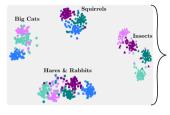


Design Task
Data Collection

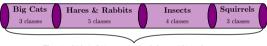
dopanim: A Dataset of Doppelganger Animals Task Data



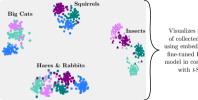
There is a high similarity among animal classes within each group.


dopanim: A Dataset of Doppelganger Animals Task Data

There is a high similarity among animal classes within each group.

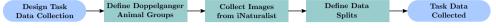


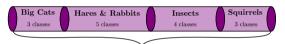
Visualizes a subset of collected images using embeddings of a fine-tuned DINOv2 model in combination with t-SNE.


dopanim: A Dataset of Doppelganger Animals Task Data

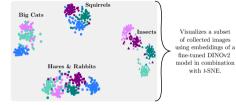
There is a high similarity among animal classes within each group.

Visualizes a subset of collected images using embeddings of a fine-tuned DINOv2 model in combination with t-SNE.



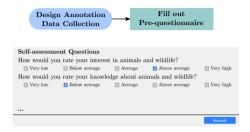

There is no overlap in photographers between train, test, and validation splits.

dopanim: A Dataset of Doppelganger Animals

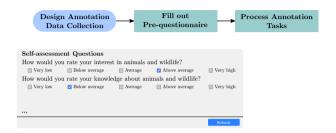


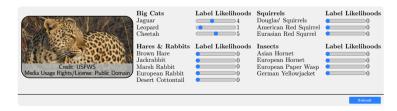
There is a high similarity among animal classes within each group.

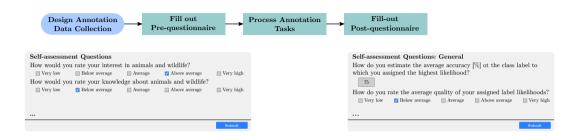
Training Data	Validation & Test Data


There is no overlap in photographers between train, test, and validation splits.

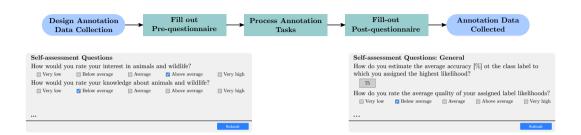
Dataset	dopanim
Task Data	
data modality	image
training instances [#]	10,484
validation instances [#]	750
test instances [#]	4,500
classes [#]	15

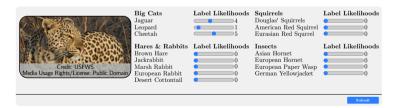

Intelligent Embedded Systems


Design Annotation Data Collection

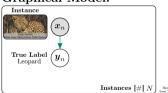








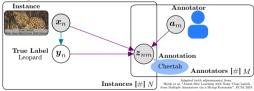
Dataset	dopanim
Annotation Data	
annotators [#]	20
annotation platform	LabelStudio
annotator meta-data	/
annotation times	/
soft class labels	/
annotations per instance $[\overline{\#}]$	$5.0_{\pm 0.19}$
annotations per annotator $[\overline{\#}]$	$2,602_{\pm 1,255}$
overall accuracy [%]	67.3
accuracy per annotator [%]	65.6 ± 14.7



Multi-annotator learning approaches consider which class label originates from which annotator to estimate the annotators' performances (e.g., confusion matrices) for improving neural networks' generalization performances during training.

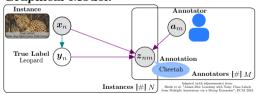
Multi-annotator learning approaches consider which class label originates from which annotator to estimate the annotators' performances (e.g., confusion matrices) for improving neural networks' generalization performances during training.

Graphical Model:



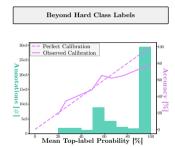
Adapted (with adjustements) from: Herde et al. "Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension", ECAI 2024.

Multi-annotator learning approaches consider which class label originates from which annotator to estimate the annotators' performances (e.g., confusion matrices) for improving neural networks' generalization performances during training.


Graphical Model:

Multi-annotator learning approaches consider which class label originates from which annotator to estimate the annotators' performances (e.g., confusion matrices) for improving neural networks' generalization performances during training.

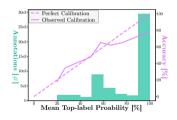
Graphical Model:

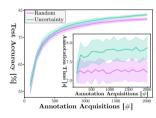


Benchmark: The empirical evaluation covers

- 7 dataset variants of dopanim with varying noise rates and numbers of annotations per instance,
- 9 multi-annotator learning approaches with different assumptions regarding annotators' performances,
- 3 evaluation scores in the form of accuracy, Brier score, and top-calibration error.

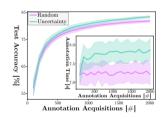
Use Cases Further Learning Information

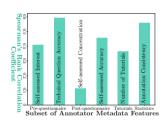



Use Cases Further Learning Information

Beyond Hard Class Labels

Active Learning with Real Annotation Times


Use Cases Further Learning Information


Beyond Hard Class Labels

Active Learning with Real Annotation Times

Learning from Annotator Metadata

Conclusion Takeaway and Links

Takeaway: dopanim is a multi-purpose image classification dataset supporting research in many areas, e.g., noisy label learning, active learning, and learning beyond hard class labels.

Conclusion Takeaway and Links

Takeaway: dopanim is a multi-purpose image classification dataset supporting research in many areas, e.g., noisy label learning, active learning, and learning beyond hard class labels.

