MultiOrg: A Multi-Rater Organoid Detection Dataset

NeurIPS 2024: Datasets & Benchmarks

<u>Christina Bukas</u>¹, Harshavardhan Subramanian¹, Fenja See², C<mark>arin</mark>a Steinchen², Ivan Ezhov³, Gowtham Boosarpu⁴, Sara Asgharpour², Gerald Burgstaller², Mareike Lehmann^{2,4}, Florian Kofler^{1,5,6}, Marie Piraud¹

¹Helmholtz AI, Helmholtz Munich, Germany

²Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Germany

³Department of Computer Science, Technical University of Munich, Germany

⁴Institute for Lung Research, Philipps-University Marburg, Germany

⁵Department of Neuroradiology, Technical University of Munich, Munich, Germany.

⁶Department of Quantitative Biomedicine, University of Zurich, Switzerland.

Motivation & Background

What are organoids?

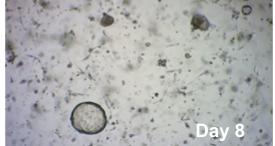
Organoids are used for:

- Disease understanding
- Drug development
- Personalised medicine

NeurIPS 2024: Datasets & Benchmarks

How Organoids are made

Growing tiny organs in the lab



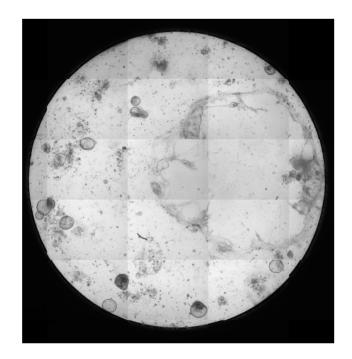
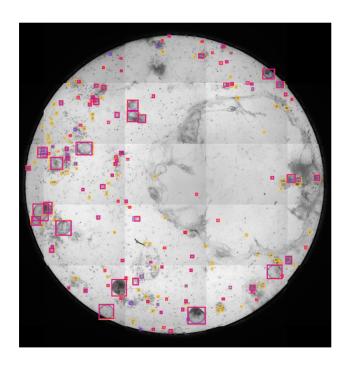
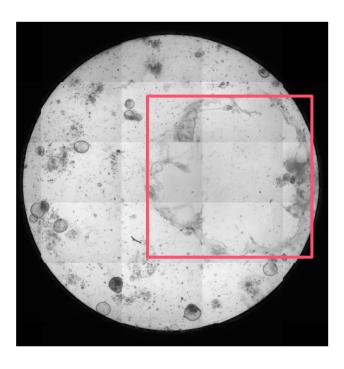
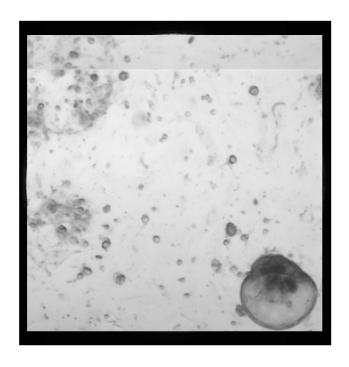
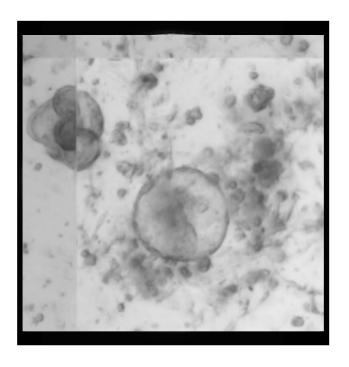

Organoid culture

Image acquisition

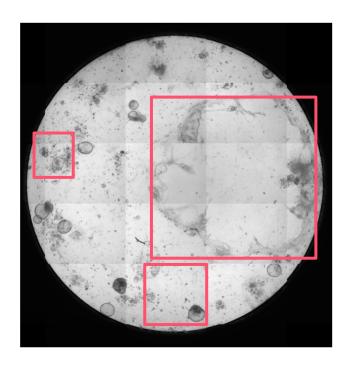





Labeling uncertainty and noise


Time-consuming manual annotations

- Time-consuming manual annotations
- Noise due to artifacts, dead cells and debris



- Time-consuming manual annotations
- Noise due to artifacts, dead cells and debris
- Large range of organoid sizes

- Time-consuming manual annotations
- Noise due to artifacts, dead cells and debris
- Large range of organoid sizes
- Organoid clusters

Labeling uncertainty and noise

- Time-consuming manual annotations
- Noise due to artifacts, dead cells and debris
- Large range of organoid sizes
- Organoid clusters

No datasets in organoid detection addressing label uncertainty!

The MultiOrg dataset

Overview

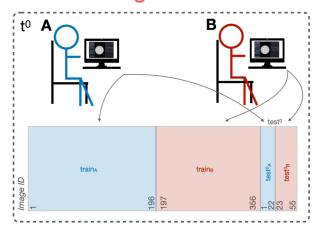
400+ 2D microscopy images

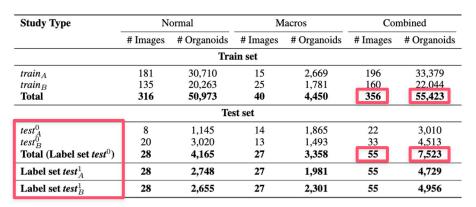
Study Type	Normal		Macros		Combined			
	# Images	# Organoids	# Images	# Organoids	# Images	# Organoids		
Train set								
train _A	181	30,710	15	2,669	196	33,379		
train _B	135	20,263	25	1,781	160	22.044		
Total	316	50,973	40	4,450	356	55,423		
Test set								
$test^0_A$	8	1,145	14	1,865	22	3,010		
$test_B^{\vec{0}}$	20	3,020	13	1,493	33	4,513		
Total (Label set test ⁰)	28	4,165	27	3,358	55	7,523		

The MultiOrg dataset

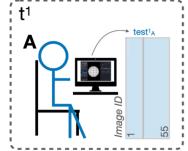
Overview

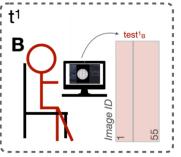
- 400+ 2D microscopy images
- 60,000+ organoid annotations

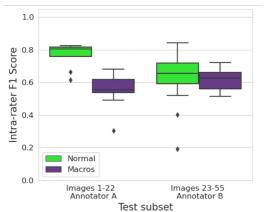

Study Type	Normal		Macros		Combined			
	# Images	# Organoids	# Images	# Organoids	# Images	# Organoids		
Train set								
train _A	181	30,710	15	2,669	196	33,379		
$train_B$	135	20,263	25	1,781	160	22.044		
Total	316	50,973	40	4,450	356	55,423		
Test set								
$test_A^0$	8	1,145	14	1,865	22	3,010		
$test_B^0$	20	3,020	13	1,493	33	4,513		
Total (Label set test ⁰)	28	4,165	27	3,358	55	7,523		

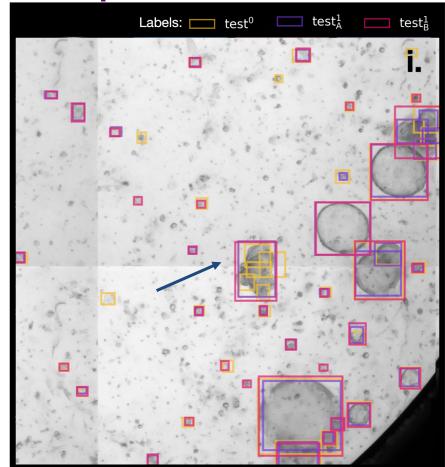

The MultiOrg dataset

Overview


- 400+ 2D microscopy images
- 60,000+ organoid annotations
- Three expert labels on the test set

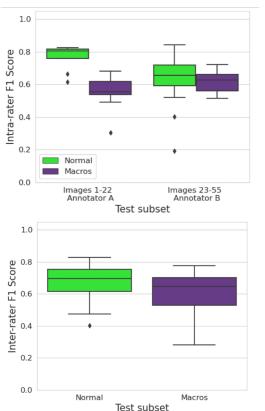

Multi-rater setting

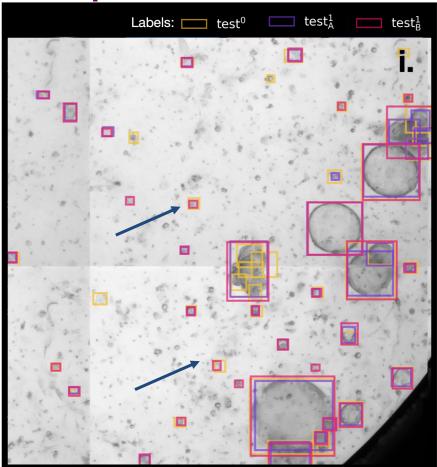




NeurIPS 2024: Datasets & Benchmarks

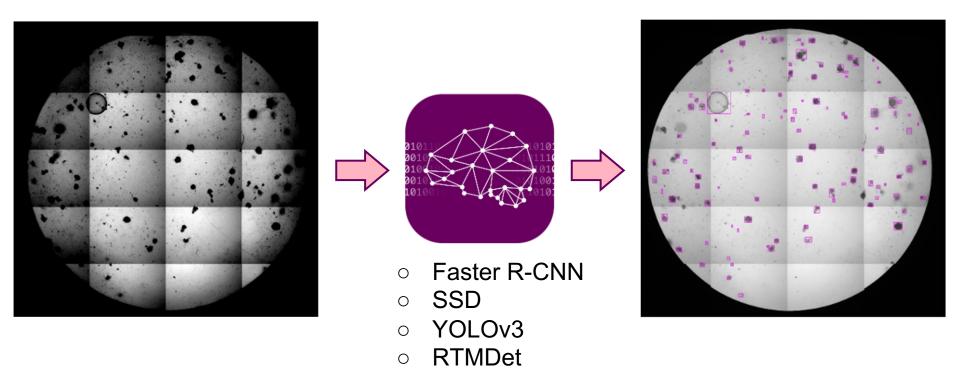
Multi-rater setting at two distinct timepoints


Allows for intra- and inter-rater analyses

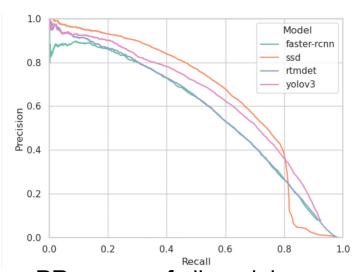


Multi-rater setting at two distinct timepoints

Allows for intra- and inter-rater analyses



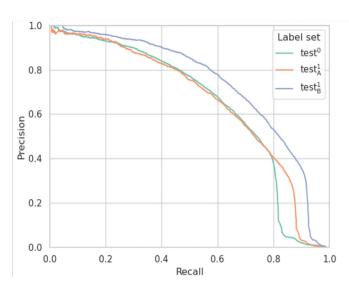
NeurIPS 2024: Datasets & Benchmarks


MultiOrg: Model Benchmark

Object-detection models

MultiOrg: Model Benchmark

Object Detection Scores


PR curves of all models on test⁰

Metric	Label set	Faster R-CNN	SSD	YOLOv3	RTMDet
Precision	$test^0$	0.23	0.61	0.73	0.64
	$test^1_A$	0.16	0.44	0.58	0.54
	$test_B^{\hat{1}}$	0.18	0.50	0.67	0.56
	mean	0.19	0.52	0.66	0.58
Recall	$test^0$	0.84	0.67	0.48	0.51
	$test^1_A$	0.92	0.78	0.62	0.69
	$test_B^{\hat{1}^*}$	0.97	0.83	0.67	0.68
	mean	0.91	0.76	0.59	0.63
F1-score	$test^0$	0.36	0.64	0.58	0.57
	$test^1_A$	0.27	0.57	0.60	0.61
	$test_B^1$	0.30	0.62	0.67	0.62
	mean	0.31	0.61	0.62	0.60
mAP@0.5IoU (%)	$test^0$	56.56	64.40	62.55	57.71
	$test^{\scriptscriptstyle 1}_A$	57.09	65.79	61.11	63.87
	$test^1_B$	68.36	73.88	70.25	63.23
	mean	60.67	68.09	64.64	61.60
mAP@0.75IoU (%)	$test^0$	17.48	21.81	19.15	22.56
	$test^1_A$	23.53	23.42	19.13	30.13
mAr &0.73100 (%)	$test_B^{\hat{1}^*}$	46.98	46.48	39.01	32.85
	mean	29.33	30.57	25.76	28.51

NeurIPS 2024: Datasets & Benchmarks

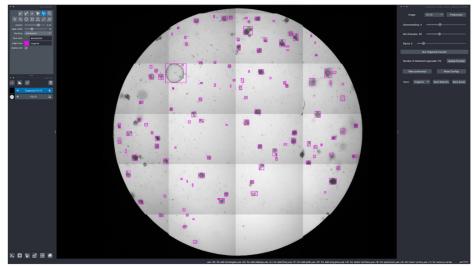
MultiOrg: Model Benchmark

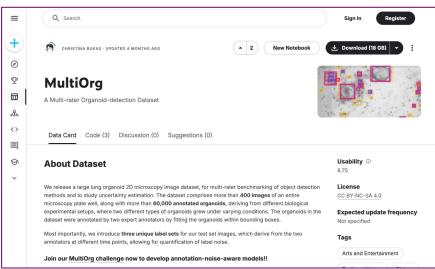
Object Detection Scores

PR curves of SSD model on all label sets

Metric	Label set	Faster R-CNN	SSD	YOLOv3	RTMDet
Precision	$test^0$	0.23	0.61	0.73	0.64
	$test^1_A$	0.16	0.44	0.58	0.54
	$test_B^{\hat{1}}$	0.18	0.50	0.67	0.56
	mean	0.19	0.52	0.66	0.58
Recall	$test^0$	0.84	0.67	0.48	0.51
	$test^1_A$	0.92	0.78	0.62	0.69
	$test_B^{\hat{1}}$	0.97	0.83	0.67	0.68
	mean	0.91	0.76	0.59	0.63
F1-score	$test^0$	0.36	0.64	0.58	0.57
	$test^1_A$	0.27	0.57	0.60	0.61
	$test_B^{\hat{1}}$	0.30	0.62	0.67	0.62
	mean	0.31	0.61	0.62	0.60
mAP@0.5IoU (%)	$test^0$	56.56	64.40	62.55	57.71
	$test^1_A$	57.09	65.79	61.11	63.87
	$test_B^1$	68.36	73.88	70.25	63.23
	mean	60.67	68.09	64.64	61.60
mAP@0.75IoU (%)	$test^0$	17.48	21.81	19.15	22.56
	$test^1_A$	23.53	23.42	19.13	30.13
	$test_B^{ extsf{1}}$	46.98	46.48	39.01	32.85
	mean	29.33	30.57	25.76	28.51

NeurIPS 2024: Datasets & Benchmarks

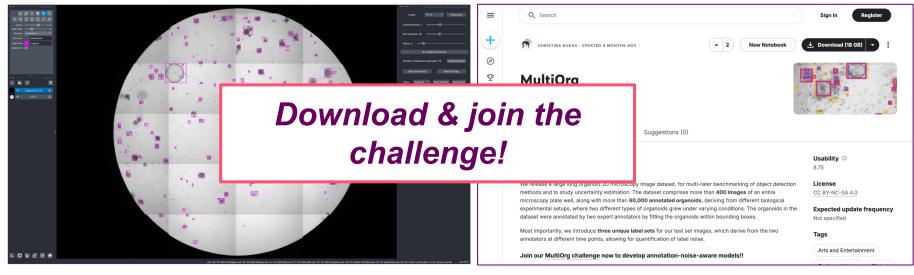

MultiOrg: Key contributions


Open-source resources

Napari plugin for the biologist community

Dataset, benchmark & challenge

https://github.com/HelmholtzAl-Consultants-Munich/napari-organoid-counter


MultiOrg: Key contributions

Open-source resources

Napari plugin for the biologist community

Dataset, benchmark & challenge

https://github.com/HelmholtzAl-Consultants-Munich/napari-organoid-counter