

WebUOT-1M: Advancing Deep Underwater Object Tracking with A Million-Scale Benchmark

Chunhui Zhang, Li Liu, Guanjie Huang, Hao Wen, Xi Zhou, Yanfeng Wang

chunhui.zhang@sjtu.edu.cn

Presenter: Chunhui Zhang

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

Background

Underwater object tracking (UOT) refers to the task of sequentially locating a submerged instance in an underwater video, given its initial position in the first frame.

The underwater environment usually exhibits uneven lighting conditions, low visibility, low contrast, watercolor variations, similar distractors, camouflage, etc. posing distinct challenges for UOT compared to traditional open-air tracking tasks.

NeurIPS 2024 DB Track

Motivations

UOT has not been thoroughly explored due to the absence of large-scale datasets, benchmarks, and challenges in gathering abundant underwater videos.

Due to the huge appearance variation and behavioral differences among various marine animals, models trained on small-scale datasets[1-4] struggle with unseen species, leading to poor generalization performance.

 [1] Landry Kezebou, et al. Underwater object tracking benchmark and dataset. HST 2019
[2] Karen Panetta, et al. Comprehensive underwater object tracking benchmark dataset and underwater image enhancement with GAN. JOE 2021

[3] Basit Alawode, et al. UTB180: A high-quality benchmark for underwater tracking. ACCV 2022

[4] Levi Cai, et al. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles. IJCV 2023

NeurIPS 2024 DB Track

Motivations

WebUOT-1M: The First Million-Scale UOT Benchmark

OKTrack: A framework to effectively transfer open-air domain knowledge to the UOT model through knowledge distillation

NEURAL INFORMATION PROCESSING SYSTEMS

WebUOT-1M: The First Million-Scale UOT Benchmark

Dataset	Year	Videos	Classes	Attributes	Min Min	Mean	Max	Total	Annotated	Total	Absent	Language	Data	Open
				Aturbutes	frame	frame	frame	frames	boxes	duration	label	prompt	partition	source
UOT32 36	2019	32	-	-	283	758	1,573	24 K	24 K	16 min	×	×	Test	Proprietary
UOT100 [51]	2022	104	-	3	264	702	1,764	74 K	74 K	41 min	×	×	Test	Fully
UTB180 2	2022	180	-	10	40	338	1,226	58 K	58 K	32 min	×	×	Train/Test	Fully
VMAT 5	2023	33	17	13	438	2,242	5,550	74 K	74 K	41 min	×	×	Test	Fully
UVOT400 [2023	400	50	17	40	688	3,273	275 K	275 K	2.6 hours	×	×	Train/Test	Partially
WebUOT-1M	2024	1,500	408	23	49	733	9,985	1.1 M	1.1 M	10.5 hours	✓	✓	Train/Test	Fully

NeurIPS 2024 DB Track

OKTrack: Omni-Knowledge Distillation Framework

The omni-knowledge distillation contains token contrastive representation, similarity matrix, feature embeddings, and response maps distillation losses for transferring open-air domain knowledge to underwater domain.

DA training-free motion-aware target prediction (MATP) to address model drift.

NeurIPS 2024 DB Track

Ablation Study

Base	CKD	SKD	FKD	RKD	MATP	UTB180	WebUOT-1M
1						62.3/66.6	52.0/56.5
1	1					63.6/67.9	53.9/57.8
1		1				63.2/67.4	53.5/57.2
1			1			63.2/66.9	53.2/57.2
1				1		65.0/68.1	54.8/57.9
1	1	1	1	1		65.4/68.3	55.2/58.3
1	1	1	1	1	1	66.0/68.5	56.1/58.9

Results on WebUOT-1M

NeurIPS 2024 DB Track

Results on existing UOT benchmarks (UOT100, UTB180, VMAT)

Vision-language tracking: The usage of more cues (e.g., language prompt and bounding box) can significantly boost tracking performance.

Integrating language modality: OKTrack is a flexible and scalable baseline tracker that is not only suitable for pure visual-based UOT but can also be seamlessly extended to underwater VL tracking.

Method	Pre	nPre	AUC	cAUC	mACC		
Language prompt							
JointNLT 86	22.4	32.2	31.2	29.8	31.2		
UVLTrack 44	22.5	33.8	31.2	30.1	31.3		
Language prompt + bounding box							
JointNLT 86	25.5	34.9	32.7	31.5	32.8		
VLT _{SCAR} [28]	33.4	44.0	37.8	36.4	38.0		
VLT _{TT} 28	41.7	52.1	48.3	47.3	48.8		
CiteTracker-256 40	49.3	58.4	54.6	53.7	55.2		
UVLTrack 44	52.5	60.0	55.8	55.0	56.6		
All-in-One 79	53.1	61.5	57.1	56.4	58.0		

Method	Туре	#Params	FLOPs	FPS	WebUOT-1M
OKTrack	Visual-based	92.1 M	21.5 G	115	60.0/57.5/59.3/63.8/61.0
OKTrack++	VL-based	150.9 M	57.9 G	66	63.4/58.4/62.9/68.5/64.4

Conclusion

- We introduce WebUOT-1M, the first million-scale benchmark dataset featuring diverse underwater video sequences, essential for offering a dedicated platform for the development and evaluation of UOT algorithms.
- We propose a simple yet strong omni-knowledge distillation tracking approach, termed OKTrack. It is the first work to explore knowledge transfer from a teacher Transformer using underwater and enhanced frames to a student Transformer in the UOT area.
- We comprehensively benchmark the proposed approach, along with 30 trackers based on CNN, CNN-Transformer, and Transformer on both the newly proposed WebUOT-1M and existing UOT datasets.

https://github.com/983632847/Awesome-Multimodal-Object-Tracking

NeurIPS 2024 DB Track

WebUOT-1M, Chunhui Zhang

12/12