

Advancing Video Anomaly Detection: A Concise Review and a New Dataset

Liyun Zhu, Lei Wang, Arjun Raj, Tom Gedeon, Chen Chen Paper: https://arxiv.org/abs/2402.04857 Project page: https://msad-dataset.github.io

Australian National University

1.1 Challenge & Motivation

Video Anomaly Detection (VAD) presents a challenge in real-world scenarios, particularly in security and surveillance applications.

Characteristic: unknown, diverse, and infrequent

Motivation

- Current methods struggle with diverse anomalies and complex environments.
- Although current surveys are comprehensive, they are not portable and lightweight.

1.2 Contribution

We are motivated to offer a concise review that highlights current challenges, research trends, and future directions, providing valuable insights and guidance for researchers.

We propose a new Multi-Scenario Anomaly Detection (MSAD) dataset, a high-resolution, real-world anomaly detection benchmark encompassing diverse scenarios and anomalies.

We propose a novel Scenario Adaptive Anomaly Detection (SA²D) model, using few-shot learning for efficient adaptation to new scenarios.

2.1 Related Works – Existing Datasets

Figure 1: A comparison of existing datasets such as UCSD Ped, CUHK Avenue, ShanghaiTech, UCF-Crime, UBnormal and CUVA *vs*. our Multi-Scenario Anomaly Detection (MSAD) dataset.

Drawbacks of existing datasets: Poor quality, Limited scenarios, Unreasonable anomaly types, Lack of non-human-related anomalies...

3.1 Our MSAD Dataset

Dataset	Year	Source	Domain	#Video	#HRA	#NHRA	#View	#Scenario	Modality	Resolution	Variations
Subway Entrance [3]	2008	Surveillance	Pedestrian	1	5	-	1	1	RGB	512×384	×
Subway Exit [3]	2008	Surveillance	Pedestrian	1	3	-	1	1	RGB	512×384	×
UMN [45]	2009	Surveillance	Behavior	5	1	-	3	1	RGB	320×240	×
UCSD Ped1 [79]	2010	Surveillance	Pedestrian	70	5	-	1	1	RGB	238×158	×
UCSD Ped2 [79]	2010	Surveillance	Pedestrian	28	5	-	1	1	RGB	238×158	×
CUHK Avenue [35]	2013	Surveillance	Pedestrian	35	5	-	1	1	RGB	640×360	×
ShanghaiTech [37]	2017	Surveillance	Pedestrian	437	13	-	13	1	RGB	856×480	×
UCF-Crime [72]	2018	Online Surv.	Crime	1900	12	1	NA	NA	RGB	Multiple	\checkmark
Street Scene [55]	2020	Surveillance	Traffic	81	17	-	1	1	RGB	1280×720	×
IITB Corridor [63]	2020	Surveillance	Pedestrian	358	10	-	1	1	RGB	1920×1080	×
XD-Violence [92]	2020	Films/Online	Violence	4754	5	1	NA	NA	RGB+Audio	640×360	\checkmark
UBnormal [2]	2022	3D modeling	Pedestrian	543	20	2	29	8	RGB	1080×720	\checkmark
NWPU Campus [6]	2023	Surveillance	Pedestrian	547	27	1	43	1	RGB	Multiple	×
CUVA [14]	2024	News/Online	Multiple	1000	27	15	NA	NA	RGB+Text	Multiple	\checkmark
MSAD (ours)	2024	Online Surv.	Multiple	720	35	20	\sim 500	14	RGB	Multiple	\checkmark

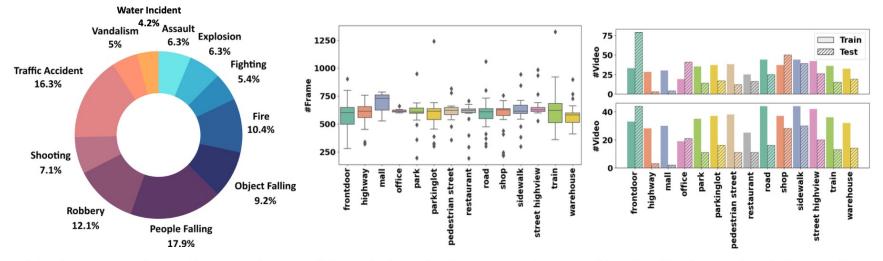
3.1 MSAD Dataset

Diverse scenarios, objects, weather and lighting conditions 14 scenarios

3.1 Our MSAD Dataset

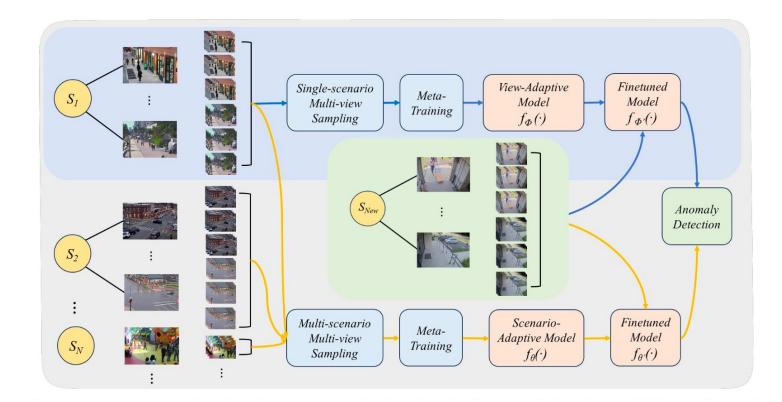
11 Anomaly types:

Assault, Explosion, Fighting, Fire, Object falling, People falling, Robbery, Shooting, Traffic accident, Vandalism, Water incident



Non-human-related Anomalies

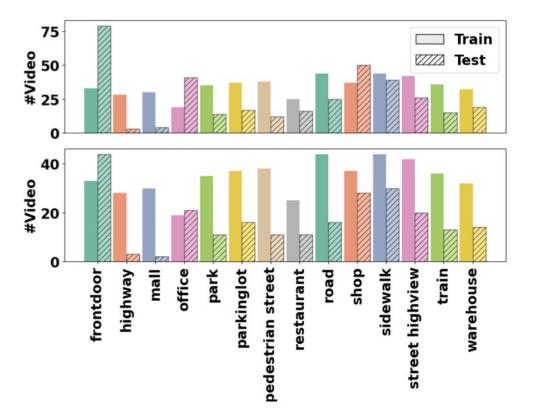
Human-related Anomalies


3.1 Our MSAD Dataset

(a) The proportions of anomalies. (b) Variations in frame numbers. (c) Distributions of train/test splits.

Figure 3: The statistics of our MSAD dataset include: (a) a breakdown of main anomaly types and their respective percentages, (b) a boxplot illustrating frame number variations across scenarios in MSAD training set, and (c) the distributions of train/test splits across scenarios for two evaluation protocols (see Sec. 3 evaluation protocols): (*top* plot) generalizability and adaptability, and (*bottom* plot) practical applicability and effectiveness.

3.2 Our Proposed Method - SA²D


Current method only train the model with different viewpoints under single scenario.

Scenario-Adaptive: Apply the few-shot learning in various scenarios and finetune the model in a new scenario.

3.3 Evaluation - Two Protocols

(i) Train on 360 normal videos from 14 scenarios and test on the remaining 120 normal videos and 240 abnormal videos. This protocol is suitable for evaluating selfsupervised methods.

(ii) Train on 360 normal and 120 abnormal videos, and test on 120 normal and 120 abnormal videos. During training, we only provide video-level annotations. This protocol is suitable for evaluating weakly-supervised methods trained with our video-level annotations.

3.4 Evaluation - Self-supervised Methods

Table 2: Experimental results on single-scenario evaluation. On ShanghaiTech (ShT), only 7 views are used during training and the rest views are individually used for testing. The notation ShT-v* denotes the use of different camera views.

Test view	Train	FSAI Micro) [<mark>36</mark>] Macro	- Train				(ours) Macro
ShT-v1 ShT-v3 ShT-v5 ShT-v6 ShT-v8	ShT (7 views)	53.40	26.58 53.32 78.27	MSAD	64.39 55.04 70.26	62.92 62.56 54.63 71.02 57.45	67.59 55.74 75.47	73.43 54.02 72.35

Table 3: Evaluations on cross-scenario setups. We use FSAD [36] and SA²D (ours) for training on ShanghaiTech (ShT) and MSAD, respectively.

Train	Test		UC Macro
ShT	UCSD Ped2 CUHK Avenue MSAD	69.98	
MSAD	UCSD Ped2 CUHK Avenue MSAD	79.57	

3.4 Evaluation - Weakly-supervised Methods

Table 4: Comparison of six methods with varying backbones on UCF-Crime, ShanghaiTech, and our MSAD dataset using three popular backbones: C3D, I3D, and SwinTransformer (SwinT).

	Venue	U	CF-Cri	me	Sha	anghai'	Tech	MS	SAD
		C3D	I3D	SwinT	C3D	I3D	SwinT	I3D	SwinT
MIST [18]	CVPR 2021	81.40	82.30	-	93.13	94.83	-	-	-
RTFM [76]	ICCV 2021	83.28	83.14	83.31	91.51	97.94	96.76	86.65	85.67
MSL [31]	AAAI 2022	82.85	85.30	85.62	94.23	95.45	97.32	-	-
UR-DMU [102]	AAAI 2023	82.65	86.19	83.74	94.67	96.15	95.71	85.02	72.36
MGFN [13]	AAAI 2023	82.37	83.44	84.30	90.82	93.97	93.58	84.96	78.94
TEVAD [12]	CVPRW 2023	83.39	84.54	84.65	92.05	98.10	97.63	86.82	83.60

3.4 Evaluation - Cross dataset

Table 9: Comparison of cross-dataset results using four recent anomaly detection models with the I3D backbone. UCF, ShT, CUHK, and Ped2 denote UCF-Crime, ShanghaiTech, CUHK Avenue, and UCSD Ped2, respectively. Improvements from using models pre-trained on the MSAD dataset are highlighted in red, while performance drops are indicated in blue.

Method	$UCF \rightarrow ShT$	UCF→CUHK	$UCF \rightarrow Ped2$	$MSAD \rightarrow ShT$	MSAD \rightarrow CUHK MSAD \rightarrow Ped2
RTFM [76]	42.62	50.76	60.03	39.59 (\	63.23 (<u>12.47%</u>) 57.97 (<u>2.06%</u>)
UR-DMU [102]	46.69	45.67	62.90	35.05 (\11.64%)	58.86 (†13.19%) 66.84 (†3.94%)
MGFN [13]	37.58	44.48	51.75	48.10 (†10.52%)	56.66 (†12.18%) 62.09 (†10.34%)
TEVAD [12]	59.34	43.39	36.96	45.27 (\14.07%)	64.82 (†21.43%) 62.56 (†25.60%)

Evaluating the generalization of different weakly-supervised methods.

3.4 Evaluation - Different Anomalies & Scenarios

Table 7: Performance evaluations by anomaly type (a total of 11 main anomaly types) on our MSAD test set are conducted. We use frame-level Micro AUC (%) and Average Precision (AP, in %) as evaluation metrics for models pretrained on either UCF-Crime or our MSAD. We use I3D as the backbone for all methods. The best training scheme for each method is highlighted in bold.

Table 8: Performance evaluations by scenario (a total of 14 scenarios) on our MSAD test set are conducted. We use frame-level Micro AUC (%) and Average Precision (AP, in %) as evaluation metrics for models pretrained on either UCF-Crime or our MSAD. We use I3D as the backbone for all methods. The best training scheme for each method is highlighted in bold.

κυ		lethous. The best	uannig	scheine		In meu		ginigin	cu ili b	51 u .
	Training cat	Mathad	Ass	sault	Explo	osion	Fighting		Fi	re
	Training set	Method	AUC	AP	AUC	AP	AUC	AP	AUC	AP
-		RTFM [76]	60.6	62.2	69.3	79.0	68.5	80.7	36.0	64.5
	UCF-Crime	MGFN [13]	60.5	62.0	65.5	74.3	53.6	63.9	21.6	55.0
		UR-DMU [102]	59.4	60.5	69.3	82.0	71.2	85.2	36.2	66.5
-		RTFM [76]	68.1	67.3	46.8	60.4	89.6	93.0	61.3	81.2
	MSAD	MGFN [13]	59.7	59.0	64.5	71.9	89.4	93.5	86.0	93.0
		UR-DMU [102]	56.9	64.5	67.9	74.5	83.9	90.4	61.2	82.9
-	Tusining ast	Mathad	Object Falling		People Falling		Robbery		Shooting	
	Training set	Method	AUC	AP	AUC	AP	AUC	AP	AUC	AP
		RTFM [76]	82.0	88.8	69.5	63.0	76.8	90.6	59.7	65.7
	UCF-Crime	MGFN [13]	65.5	73.1	57.2	59.5	72.0	89.1	42.1	57.6
		UR-DMU [102]	72.4	76.5	69.3	57.6	69.7	81.5	59.9	73.8
		RTFM [76]	94.7	96.7	56.5	50.4	65.7	81.2	78.2	84.7
	MSAD	MGFN [13]	90.9	94.8	52.7	47.8	73.9	86.7	86.8	88.5
_		UR-DMU [102]	92.1	95.8	42.5	43.7	63.5	79.3	81.4	87.8
	Training set	Method	Traffic Accident		Vandalism		Water Incident		Overall	
	framing set	Weulou	AUC	AP	AUC	AP	AUC	AP	AUC	AP
		RTFM [76]	55.6	45.1	86.0	85.2	93.5	98.5	71.9	47.4
	UCF-Crime	MGFN [13]	52.6	45.3	80.7	81.4	41.0	81.7	61.8	31.2
_		UR-DMU [102]	53.0	47.9	91.6	89.7	64.6	91.3	74.3	53.4
		RTFM [76]	62.2	51.8	85.2	76.1	96.3	99.1	86.7	66.3
	MSAD	MGFN [13]	68.6	54.5	82.4	80.1	85.5	97.0	85.0	63.5
		UR-DMU [102]	62.0	55.6	84.7	77.0	98.5	99.5	85.0	68.3

	I ne be	<u> </u>				<u> </u>	,			
Trainin	a sot	Method	From	ntdoor	Hig	hway	Ν	Iall	Of	fice
ITaiiii	ig set	Method	AUC	AP	AUC	AP	AUC	AP	AUC	AP
		RTFM [76]	80.8	80.1	37.1	1.4	86.0	87.1	68.5	63.2
UCF-C	Crime	MGFN [13]	68.4	70.2	36.3	1.4	79.6	80.4	64.5	60.2
		UR-DMU [102]	84.7	82.6	18.9	1.1	83.1	80.6	66.6	57.6
		RTFM [76]	84.1	81.1	63.7	4.1	87.2	72.2	78.1	68.8
MSAD)	MGFN [13]	86.4	85.1	79.7	4.1	65.3	56.6	75.1	62.4
		UR-DMU [102]	84.8	82.8	31.5	1.3	91.0	83.8	77.8	67.3
Trainin	a cot	Method	Pa	rk	Parkinglot		Pedestrian st.		Restaurant	
Irainin	ig set	Method	AUC	AP	AUC	AP	AUC	AP	AUC	AP
		RTFM [76]	75.3	23.7	66.7	16.7	84.1	67.6	66.5	56.5
UCF-C	rime	MGFN [13]	55.3	7.9	59.5	12.3	74.4	11.2	47.3	32.4
		UR-DMU [102]	91.6	34.8	62.2	17.6	58.5	6.1	75.7	74.4
		RTFM [76]	69.0	25.6	74.4	35.9	97.4	50.6	96.1	91.9
MSAD)	MGFN [13]	77.9	38.3	68.1	14.5	88.0	20.4	95.8	91.8
		UR-DMU [102]	87.8	36.2	91.4	53.9	81.9	11.5	93.1	87.4
			Roa		oad Shop		p Sidewa		alk Street hig	
Trainin	a aat	Mathad	Rua	iu	5110	P	biuen	un	Succe m	Burlow
Trainin	g set	Method	AUC	AP	AUC	AP	AUC	AP	AUC	AP
Trainin	g set	Method RTFM [76]								<u> </u>
Trainin UCF-C			AUC	AP	AUC	AP	AUC	AP	AUC	AP 35.9 8.3
		RTFM [76]	AUC 82.9	AP 47.1	AUC 85.1	AP 68.5	AUC 89.1	AP 66.1	AUC 82.6	AP 35.9
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76]	AUC 82.9 54.4 49.5 54.0	AP 47.1 18.3 26.6 16.8	AUC 85.1 69.4 78.8 80.6	AP 68.5 60.4 66.5 77.3	AUC 89.1 47.4 68.0 52.5	AP 66.1 26.4 55.9 17.1	AUC 82.6 37.2 62.0 43.3	AP 35.9 8.3 23.0 12.3
	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13]	AUC 82.9 54.4 49.5 54.0 77.9	AP 47.1 18.3 26.6 16.8 49.7	AUC 85.1 69.4 78.8 80.6 84.9	AP 68.5 60.4 66.5 77.3 77.2	AUC 89.1 47.4 68.0 52.5 85.5	AP 66.1 26.4 55.9 17.1 62.3	AUC 82.6 37.2 62.0 43.3 87.6	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76]	AUC 82.9 54.4 49.5 54.0	AP 47.1 18.3 26.6 16.8	AUC 85.1 69.4 78.8 80.6	AP 68.5 60.4 66.5 77.3 77.2 64.5	AUC 89.1 47.4 68.0 52.5 85.5 86.5	AP 66.1 26.4 55.9 17.1	AUC 82.6 37.2 62.0 43.3	AP 35.9 8.3 23.0 12.3
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102]	AUC 82.9 54.4 49.5 54.0 77.9	AP 47.1 18.3 26.6 16.8 49.7 64.4	AUC 85.1 69.4 78.8 80.6 84.9	AP 68.5 60.4 66.5 77.3 77.2 64.5	AUC 89.1 47.4 68.0 52.5 85.5	AP 66.1 26.4 55.9 17.1 62.3 64.1	AUC 82.6 37.2 62.0 43.3 87.6	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13]	AUC 82.9 54.4 49.5 54.0 77.9	AP 47.1 18.3 26.6 16.8 49.7 64.4	AUC 85.1 69.4 78.8 80.6 84.9 81.3 ain	AP 68.5 60.4 66.5 77.3 77.2 64.5	AUC 89.1 47.4 68.0 52.5 85.5 86.5	AP 66.1 26.4 55.9 17.1 62.3 64.1	AUC 82.6 37.2 62.0 43.3 87.6 85.0 //erall	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method RTFM [AUC 82.9 54.4 49.5 54.0 77.9 83.0	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2	AUC 85.1 69.4 78.8 80.6 84.9 81.3 ain AP 5.0	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8	AP 66.1 26.4 55.9 17.1 62.3 64.1 Ov AUC 71.9	AUC 82.6 37.2 62.0 43.3 87.6 85.0 7erall AP 47.4	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method RTFM [-Crime MGFN	AUC 82.9 54.4 49.5 54.0 77.9 83.0 76] [13]	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2 39.8	AUC 85.1 69.4 78.8 80.6 84.9 81.3 rain AP 5.0 2.1	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3 55.4	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8 18.3	AP 66.1 26.4 55.9 17.1 62.3 64.1 0v AUC 71.9 61.8	AUC 82.6 37.2 62.0 43.3 87.6 85.0 verall 47.4 31.2	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method RTFM [-Crime MGFN	AUC 82.9 54.4 49.5 54.0 77.9 83.0	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2	AUC 85.1 69.4 78.8 80.6 84.9 81.3 ain AP 5.0	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8	AP 66.1 26.4 55.9 17.1 62.3 64.1 Ov AUC 71.9	AUC 82.6 37.2 62.0 43.3 87.6 85.0 7erall AP 47.4	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	Train	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method -Crime RTFM [UR-DM UR-DM RTFM [RTFM [RTFM [RTFM [AUC 82.9 54.4 49.5 54.0 77.9 83.0	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2 39.8 51.3 66.9	AUC 85.1 69.4 78.8 80.6 84.9 81.3 rain AP 5.0 2.1 2.6 3.9	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3 55.4 86.9 69.5	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8 18.3 54.0 37.4	AP 66.1 26.4 55.9 17.1 62.3 64.1 AUC 71.9 61.8 74.3 86.7	AUC 82.6 37.2 62.0 43.3 87.6 85.0 /erall 47.4 31.2 53.4 66.3	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	rime	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method -Crime RTFM [MGFN UR-DM UR-DM	AUC 82.9 54.4 49.5 54.0 77.9 83.0	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2 39.8 51.3 66.9 53.0	AUC 85.1 69.4 78.8 80.6 84.9 81.3 rain AP 5.0 2.1 2.6 3.9 3.1	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3 55.4 86.9 69.5 72.3	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8 18.3 54.0 37.4 30.9	AP 66.1 26.4 55.9 17.1 62.3 64.1 AUC 71.9 61.8 74.3 86.7 85.0	AUC 82.6 37.2 62.0 43.3 87.6 85.0 / rerall 47.4 31.2 53.4 66.3 63.5	AP 35.9 8.3 23.0 12.3 40.7
UCF-C	Train	RTFM [76] MGFN [13] UR-DMU [102] RTFM [76] MGFN [13] UR-DMU [102] ing set Method -Crime RTFM [UR-DM UR-DM RTFM [RTFM [RTFM [RTFM [AUC 82.9 54.4 49.5 54.0 77.9 83.0	AP 47.1 18.3 26.6 16.8 49.7 64.4 Tr AUC 52.2 39.8 51.3 66.9	AUC 85.1 69.4 78.8 80.6 84.9 81.3 rain AP 5.0 2.1 2.6 3.9	AP 68.5 60.4 66.5 77.3 77.2 64.5 Ware AUC 82.3 55.4 86.9 69.5	AUC 89.1 47.4 68.0 52.5 85.5 86.5 Phouse AP 52.8 18.3 54.0 37.4	AP 66.1 26.4 55.9 17.1 62.3 64.1 AUC 71.9 61.8 74.3 86.7	AUC 82.6 37.2 62.0 43.3 87.6 85.0 /erall 47.4 31.2 53.4 66.3	AP 35.9 8.3 23.0 12.3 40.7

Thank you!