UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Paper: link Codebase: https://github.com/facebookresearch/unibench/

(Source: unsplash)

(Source: unsplash)

Predefined Classes

Dog Cat Bird Car

(Source: unsplash)

Predefined Classes

Dog Cat Bird Car

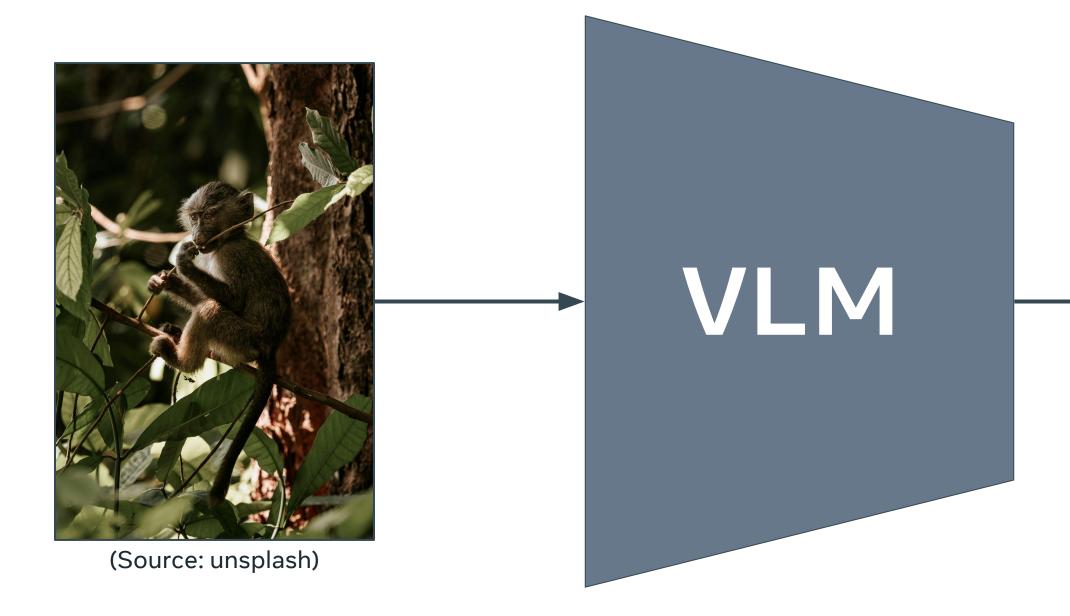
(Source: unsplash)

Supervised

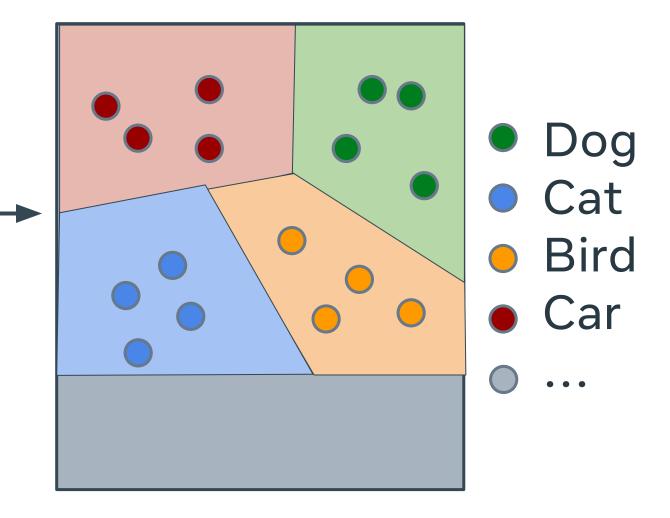
Predefined <u>Classes</u>

Dog Cat Bird Car

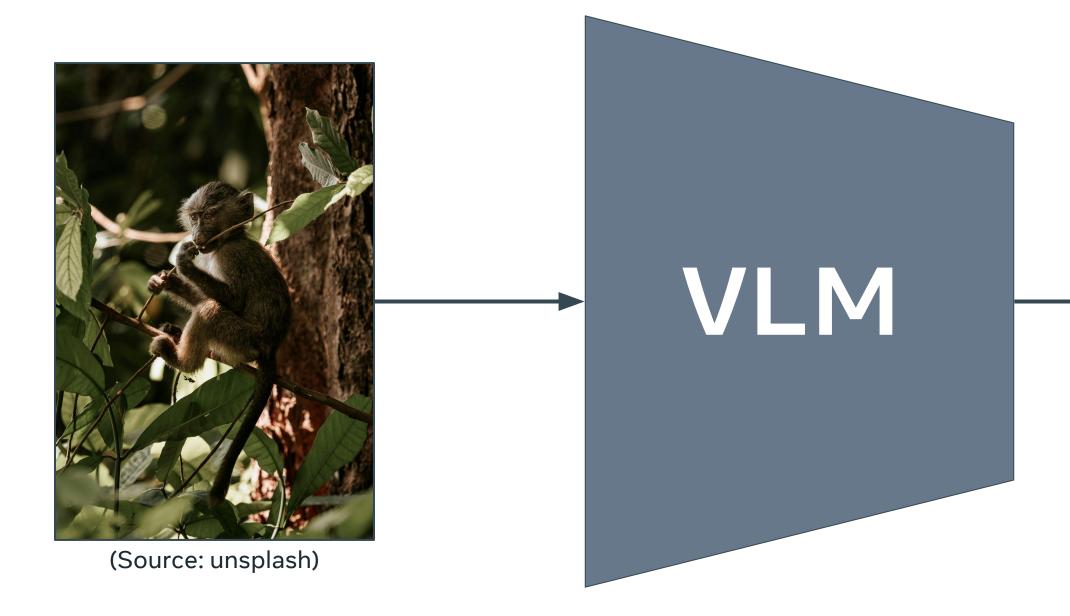
01 Introduction **Properties of Vision-Language Models**



Zero-shot Image Classification



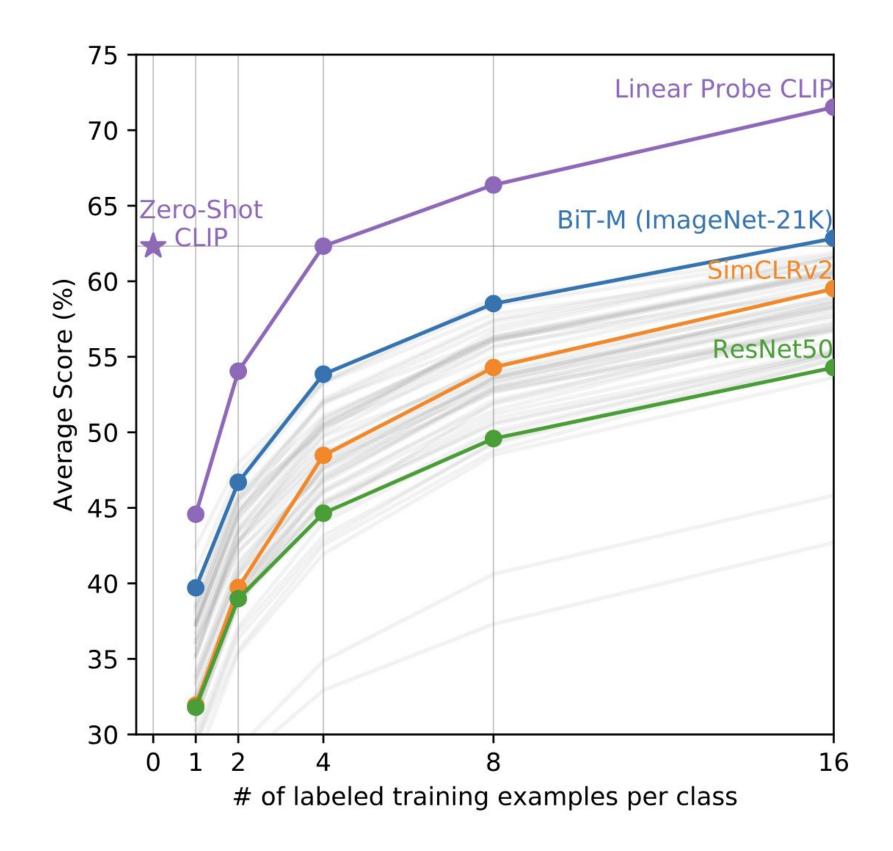
01 Introduction **Properties of Vision-Language Models**



Zero-shot Image Classification

Is the Monkey in the Foreground or Background

01 Introduction **Properties of Vision-Language Models**



(Radford, Alec et al., 2021)

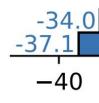
- CLIP (Radford, Alec et al., 2021)
- LiT (Zhai, Xiaohua et al., 2021)
- FLAVA (Singh, Amanpreet et al., 2021)
- CoCa (Yu, Jiahui et al., 2022)
- BLIP (Li, Junnan et al., 2022)
- EVA (Fang, Yuxin et al., 2023)
- CLIPA (Li, Xianhang et al., 2023)
- SigLIP (Zhai, Xiaohua et al., 2023)
- MetaCLIP (Xu, Hu et al., 2023)

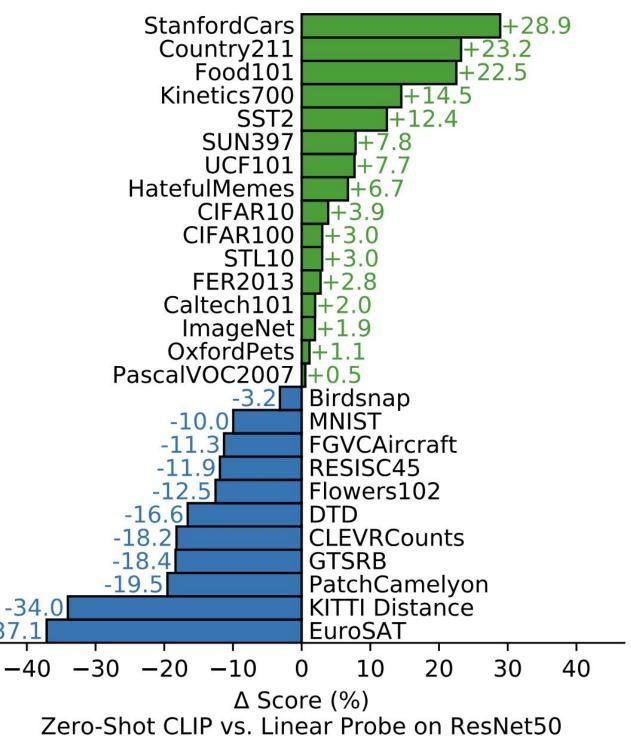
. . .

80 VLMs

- CLIP (Radford, Alec et al., 2021)
- LiT (Zhai, Xiaohua et al., 2021)
- FLAVA (Singh, Amanpreet et al., 2021)
- CoCa (Yu, Jiahui et al., 2022)
- BLIP (Li, Junnan et al., 2022)
- EVA (Fang, Yuxin et al., 2023)
- CLIPA (Li, Xianhang et al., 2023)
- SigLIP (Zhai, Xiaohua et al., 2023)
- MetaCLIP (Xu, Hu et al., 2023)

80 VLMs

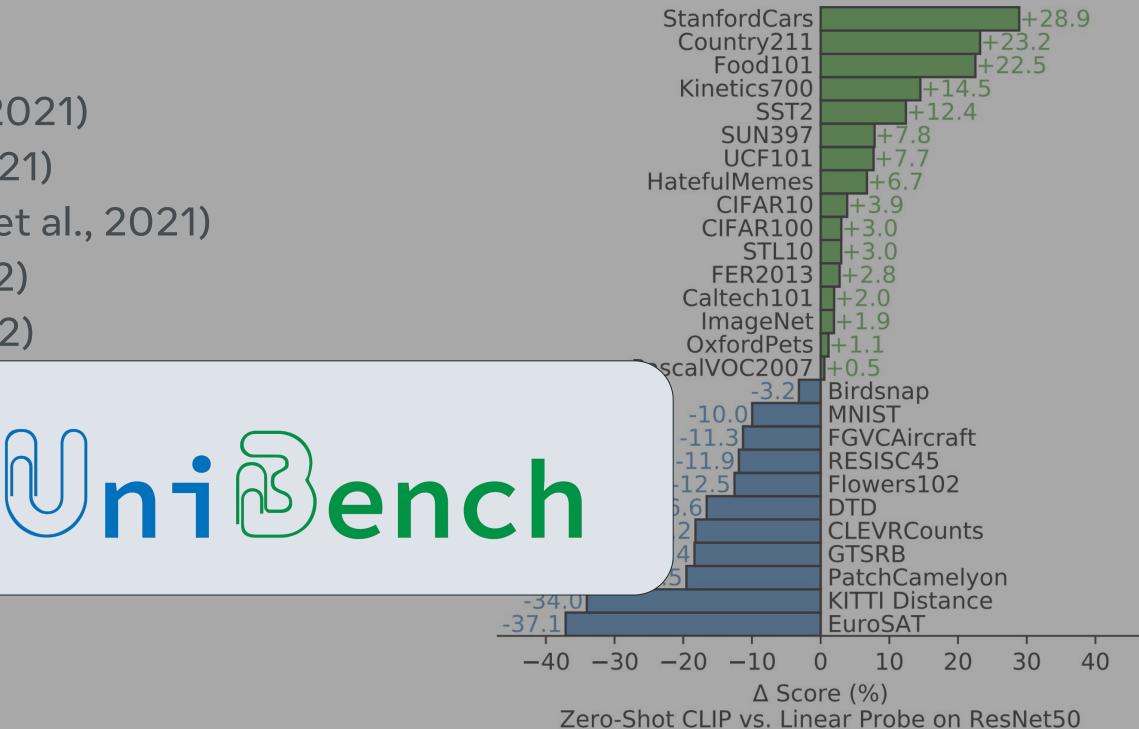




50+ Benchmarks

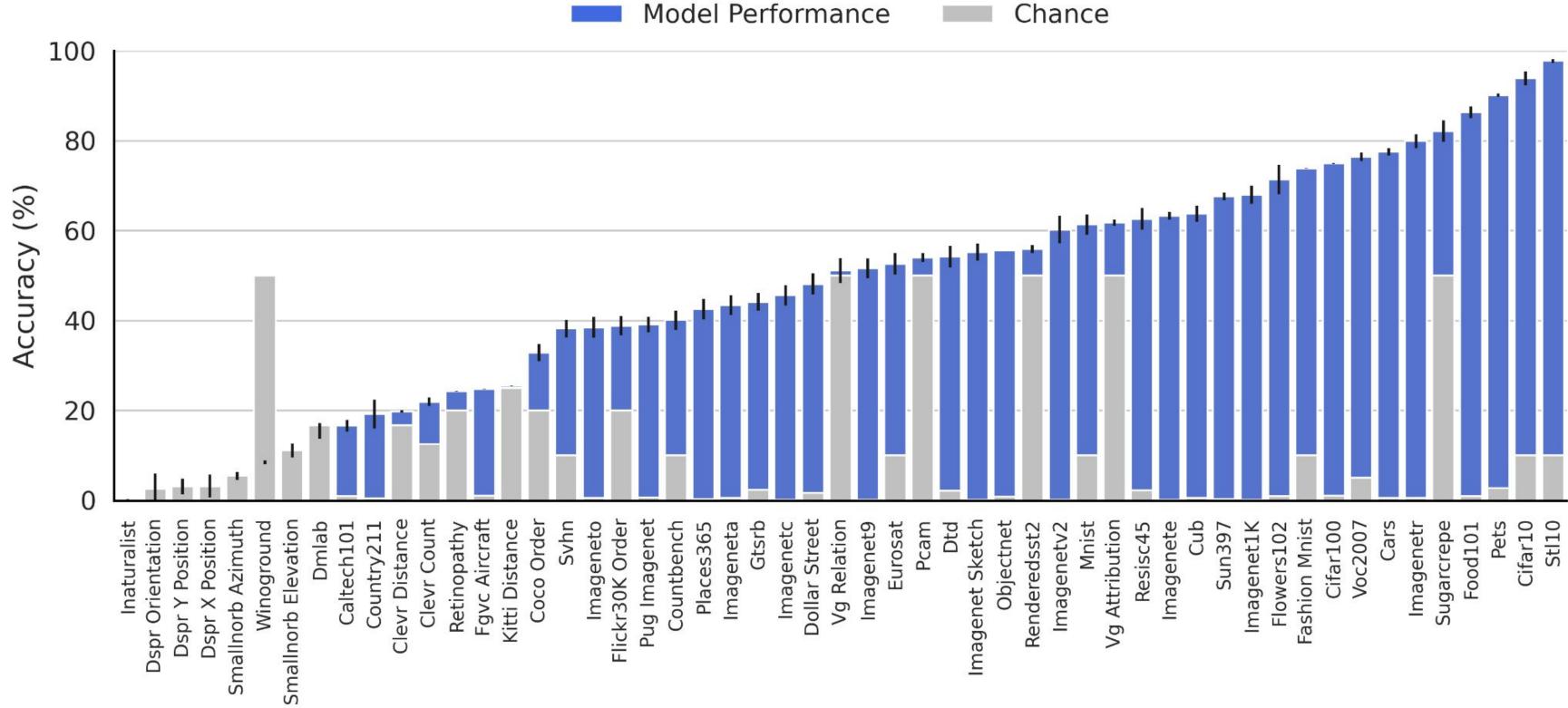
- CLIP (Radford, Alec et al., 2021)
- LiT (Zhai, Xiaohua et al., 2021)
- FLAVA (Singh, Amanpreet et al., 2021)
- CoCa (Yu, Jiahui et al., 2022)
- BLIP (Li, Junnan et al., 2022)
- EVA (Fang, Yuxin et al.,
- CLIPA (Li, Xianhang et
- SigLIP (Zhai, Xiaohua e
- MetaCLIP (Xu, Hu et al.

80 VLMs



50+ Benchmarks

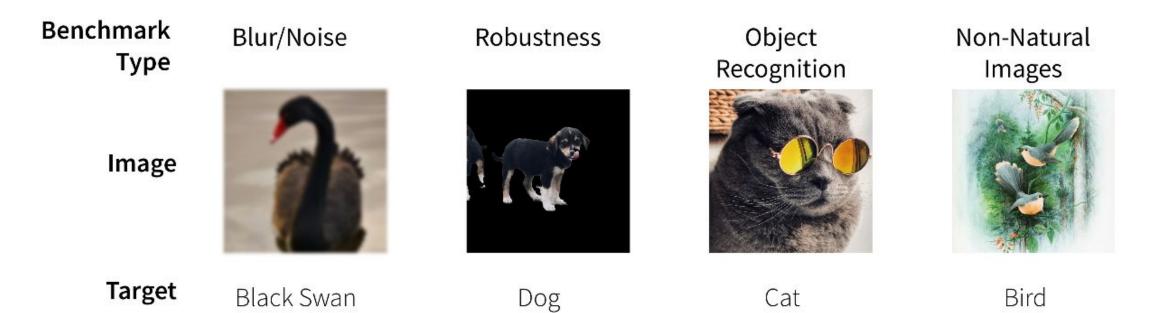
02 Methods VLMs have strengths and weaknesses



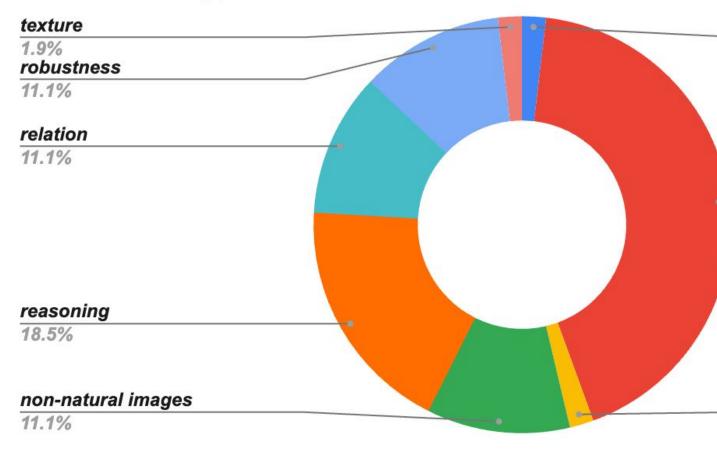
Benchmarks

Chance

02 Methods Benchmark Types



Benchmark Type Distribution



Texture

Zig Zagged

Relation

White cabinet is above black cabinet

Reasoning

two red pingpong rackets

Benchmark Type

1.9%

object recognition

42.6%

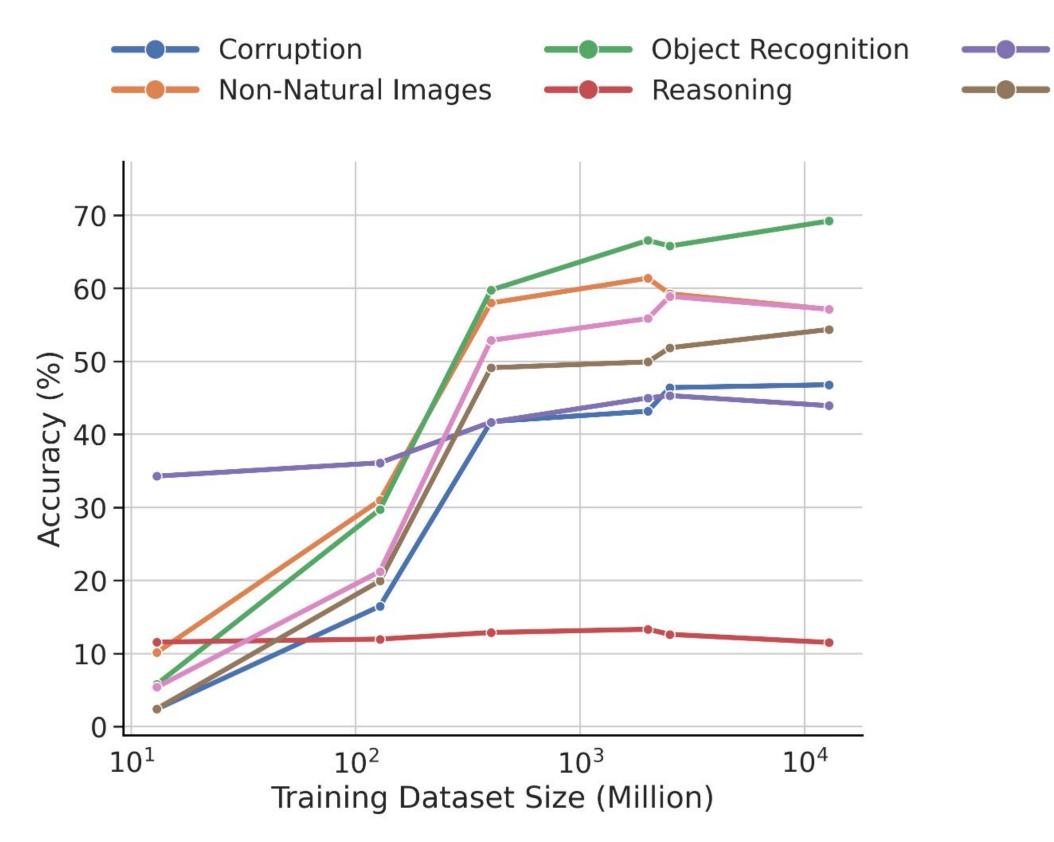
corruption 1.9%

01 Introduction Outline

- Does Scaling **Models** helps in performance?
- How do I select a **Model** for my task?
- Do we need to evaluate on all these **Benchmarks**?

03 Results

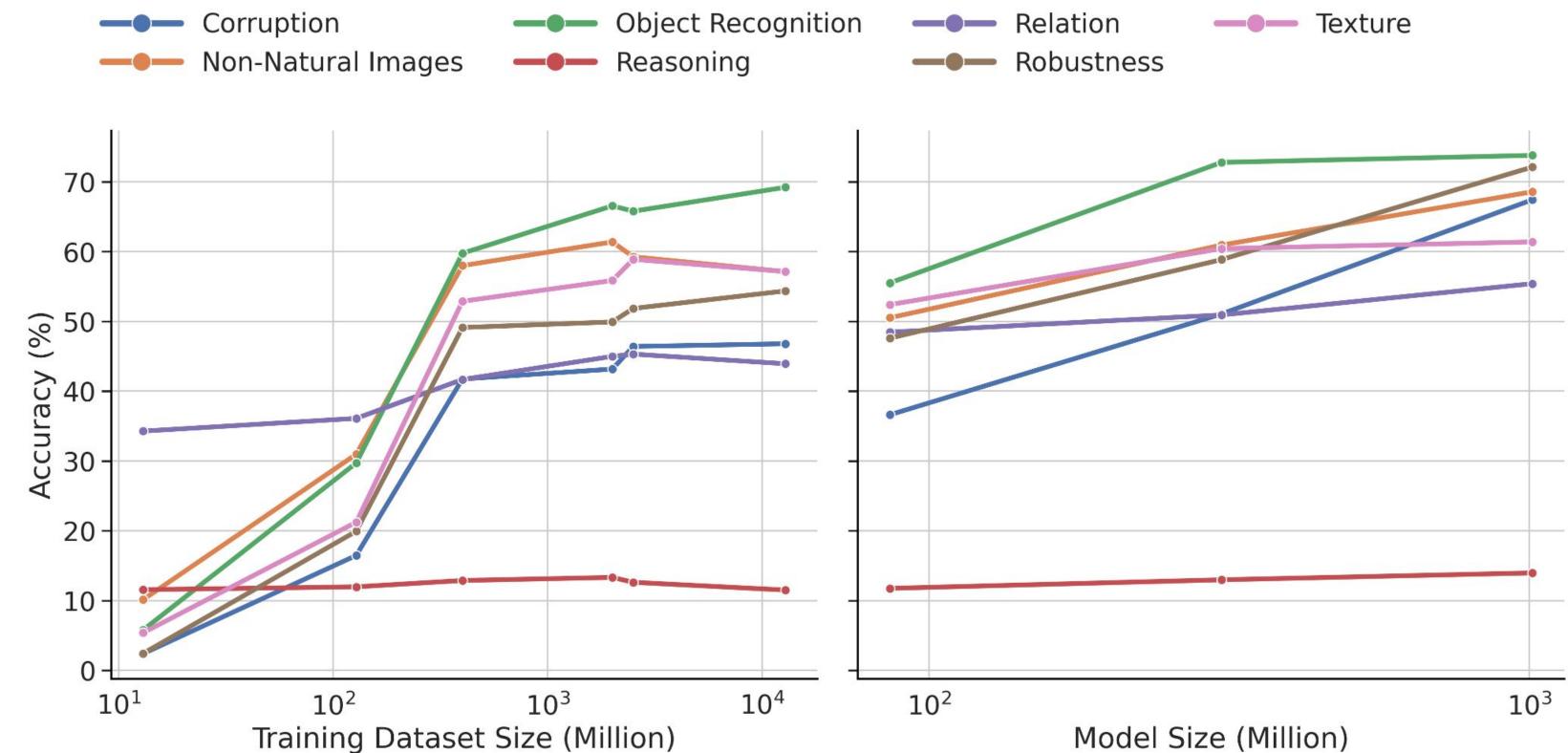
Scaling Training Dataset and Model Size Hardly Helps for Reasoning and Relations



Relation — Texture Robustness

03 Results

Scaling Training Dataset and Model Size Hardly Helps for Reasoning and Relations



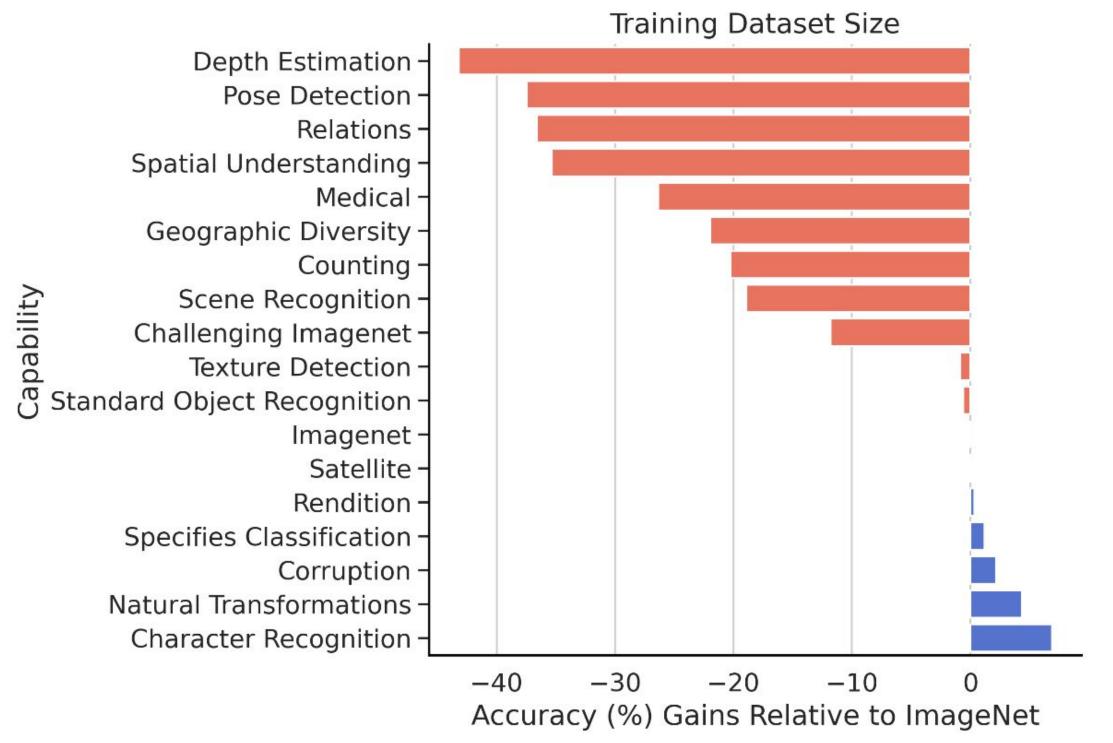
02 Methods Benchmarks

Capabilities Distribution

scene recognition	Capability
3.7%	1.9%
satellite	specifies classification
3.7%	7.4%
challenging imagenet	character recognition
7.4%	5.6%
sketches or renditions	robustness to corruptions
3.7%	1.9%
natural transformations	
3.7%	
	standard object recognition
compositionality	20.4%
3.7%	geographic diversity
pose detection	3.7%
3.7%	ImageNet
depth estimation	1.9%
3.7%	medical
	3.7%
spatial understanding	counting
11.1%	3.7%

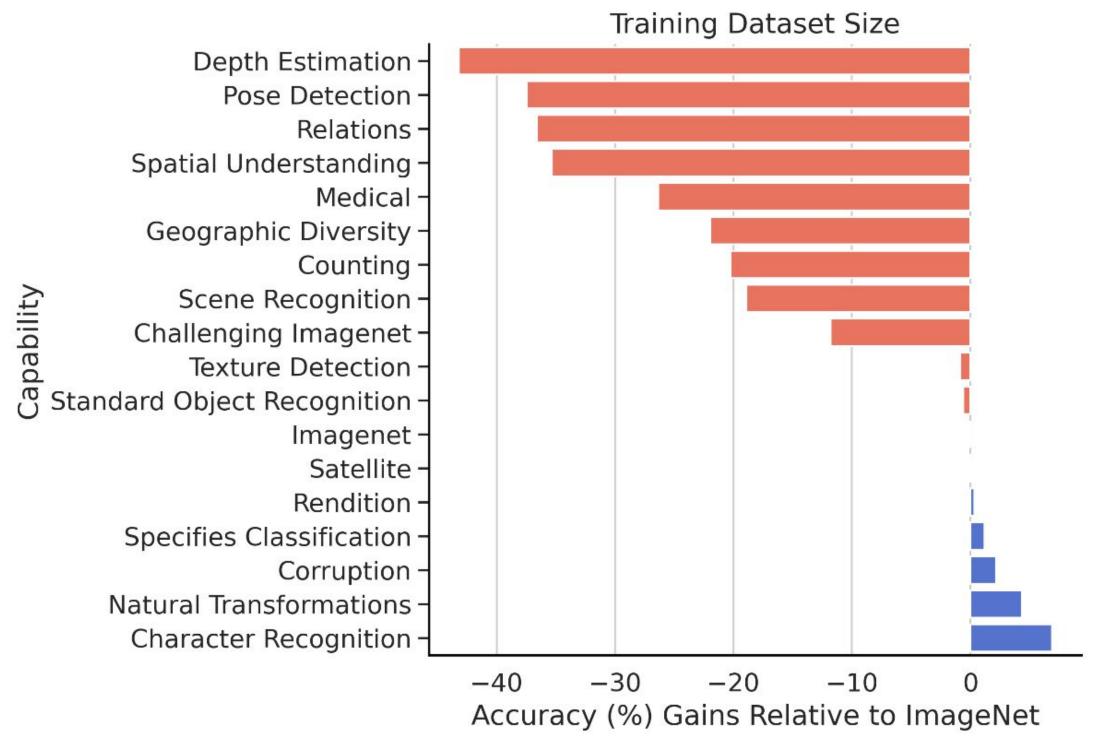
03 Results Scaling Training Dataset and Model Size Hardly Helps on Fine-grain Tasks

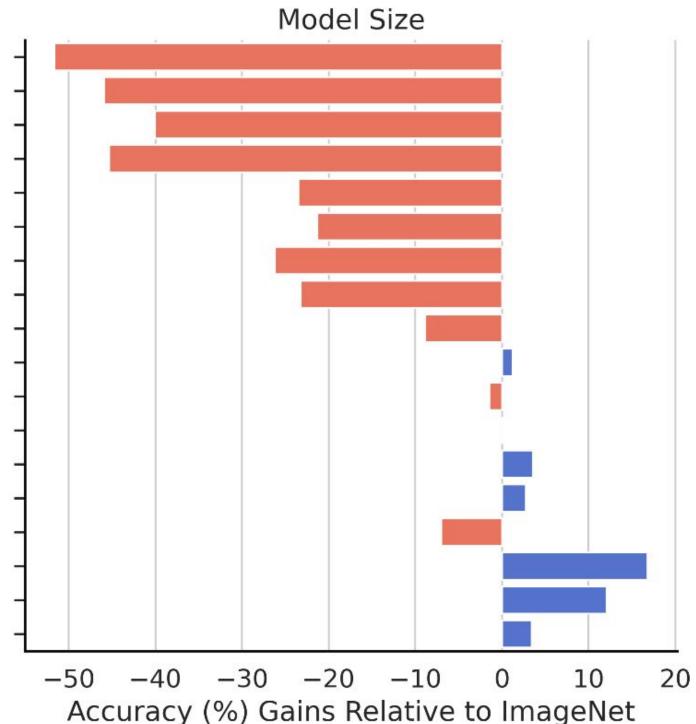
Effect of Scalling



03 Results Scaling Training Dataset and Model Size Hardly Helps for Reasoning and Relations

Effect of Scalling





03 Results - Case Study **Digit Recognition and Counting are Notable Limitations for VLMs**

03 Results - Case Study **Digit Recognition and Counting are Notable Limitations for VLMs**

MNIST

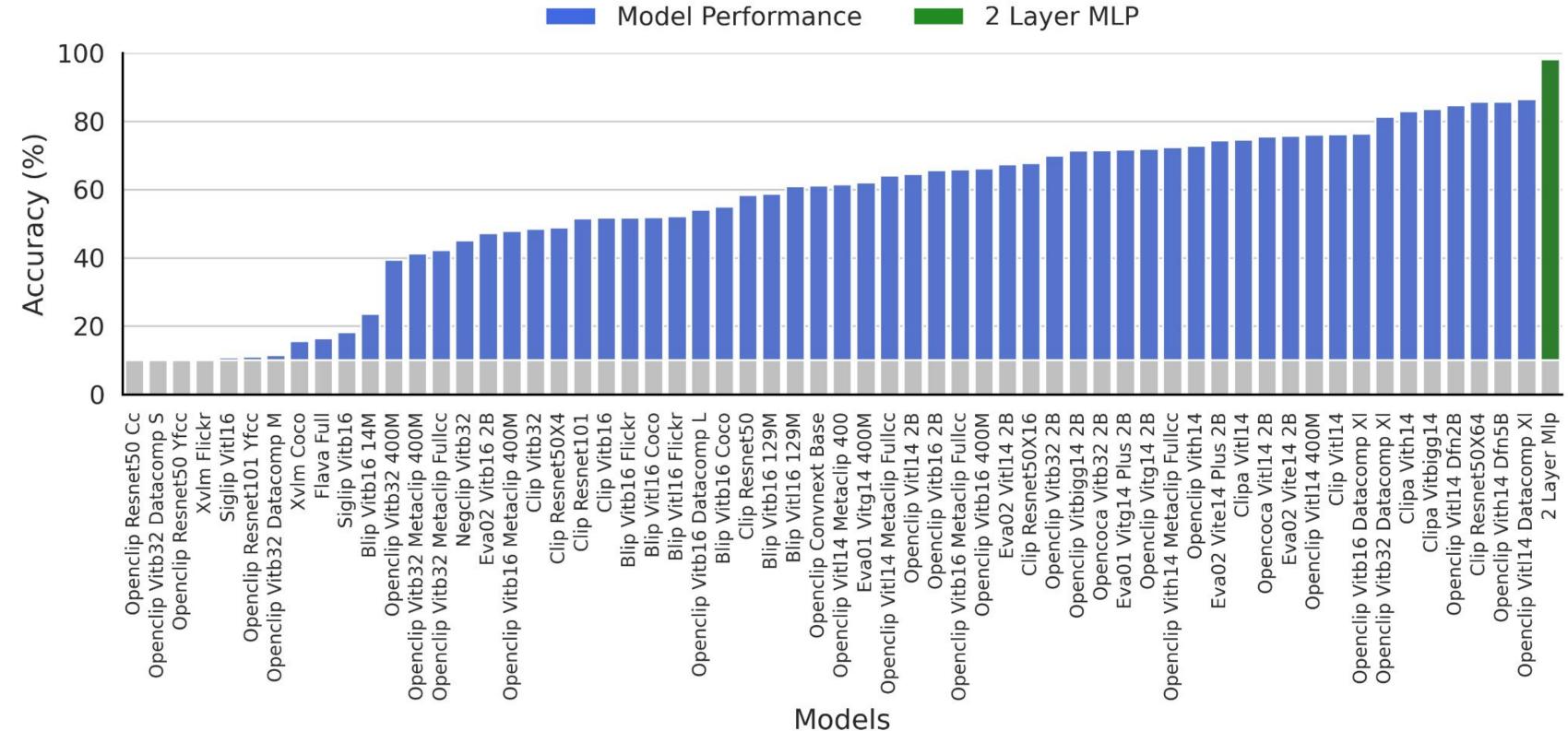
F

(LeCun, Yann et al., 1998)

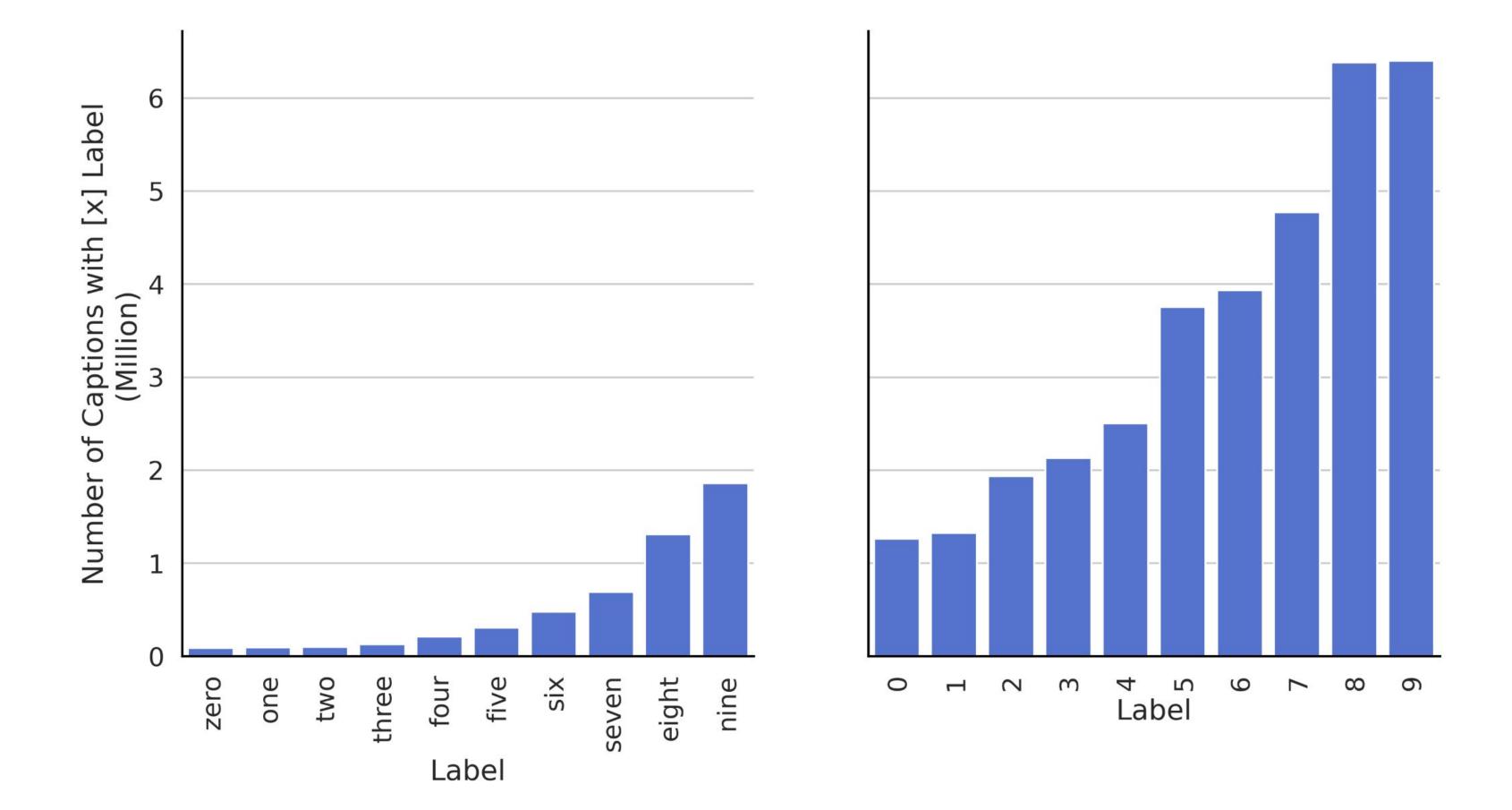
SVHN

(Netzer, Yuval, et al., 2011)

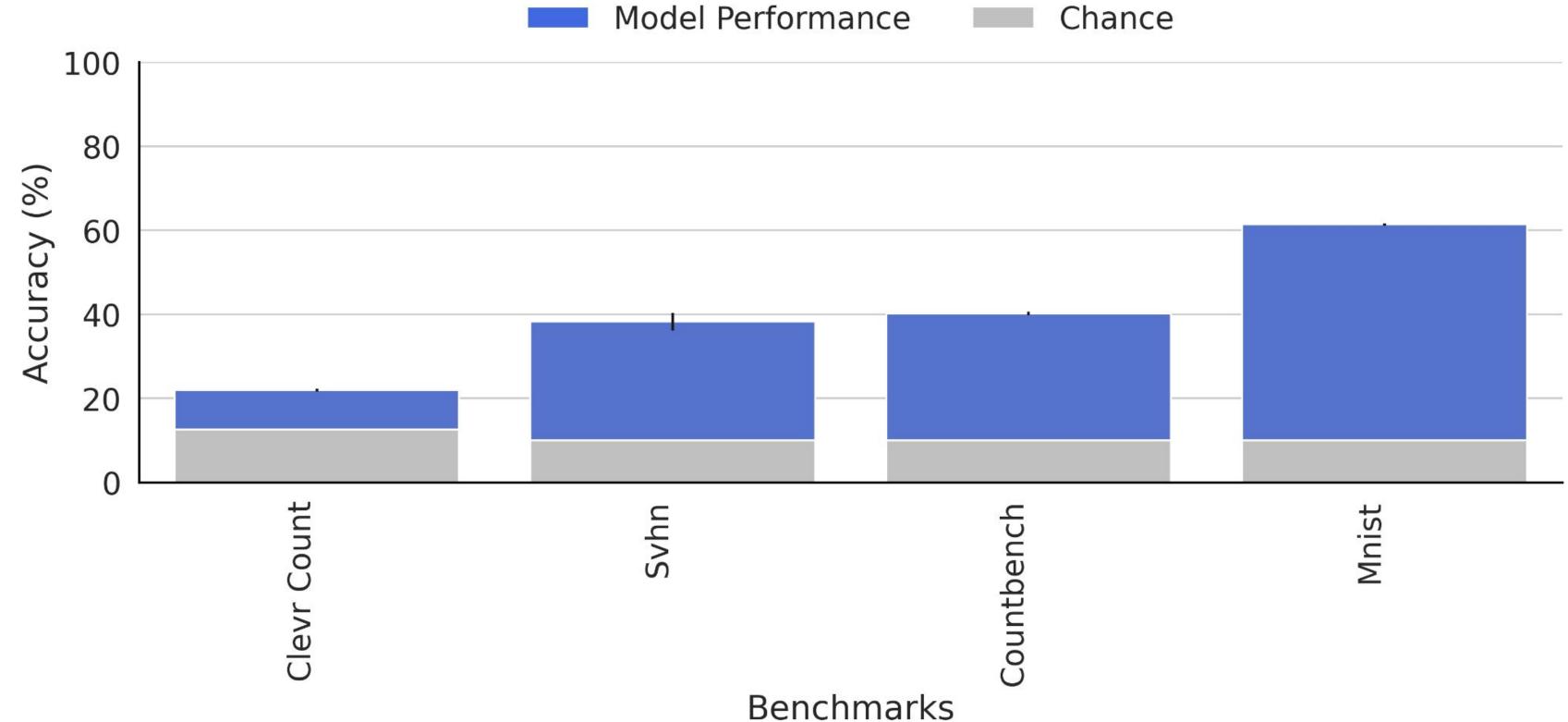
03 Results - Case Study **Digit Recognition are Notable Limitations for VLMs**



03 Results - Case Study Digit Recognition Limitation not Due to Lack of Data



03 Results - Case Study **Digit Recognition and Counting are Notable Limitations for VLMs**



Chance

01 Introduction Outline

• Does Scaling Models helps in performance?

Not for relational understanding and reasoning tasks!

- How do I select a **Model** for my task?
- Do we need to evaluate on all these **Benchmarks**?

Benchmark Type	Mean Performance	Тор		Top vs Wo	rst Scale		Worst
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	$98 \times$	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	153×	50 imes	12.1	DataComp ViT B 32

Benchmark Type	Mean Performance	Тор		Top vs Wo	rst Scale		Worst
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	98 imes	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	$153 \times$	50 imes	12.1	DataComp ViT B 32

Benchmark Type	Mean Performance	Тор		Top vs Worst Scale		Worst	
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	$98 \times$	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	153×	50 imes	12.1	DataComp ViT B 32

Benchmark Type	Mean Performance	Тор		Top vs Worst Scale		Worst	
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	98 imes	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	$153 \times$	50 imes	12.1	DataComp ViT B 32

Benchmark Type	Mean Performance	Тор		Top vs Wo	rst Scale		Worst
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	$98 \times$	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	153×	50 imes	12.1	DataComp ViT B 32

03 Results Which model should you use?

Benchmark Type	Mean Performance	Тор		Top vs Wo	rst Scale		Worst
		Model	Performance	Training Dataset Size	Model Size	Performance	Model
Corruption	46.2	EVA02 ViT E 14	74.3	$153 \times$	50 imes	2.4	DataComp ViT B 32
Non-Natural Images	54.1	EVA02 ViT E 14	74.6	$153 \times$	50 imes	16.1	DataComp ViT B 32
Object Recognition	55.0	CLIPA ViT G 14	71.1	$98 \times$	21 imes	12.1	DataComp ViT B 32
Reasoning	14.9	OpenCLIP ViT g 14	19.0	$133 \times$	$18 \times$	10.6	OpenCLIP ResNet101
Relation	46.7	NegCLIP ViT B 32	66.8	30 imes	$1 \times$	33.2	DataComp ViT B 32
Robustness	52.1	EVA02 ViT E 14	72.8	$153 \times$	50 imes	3.8	DataComp ViT B 32
Texture	53.5	MetaCLIP ViT H 14	72.5	$192 \times$	7 imes	5.4	DataComp ViT B 32
Overall	46.1	EVA02 ViT E 14	61.2	153×	50 imes	12.1	DataComp ViT B 32

01 Introduction Outline

• Does Scaling **Models** helps in performance?

Not for relational understanding and reasoning tasks!

• How do I select a **Model** for my task?

Based on the task, or EVA02...

• Do we need to evaluate on all these **Benchmarks**?

^{03 Results} No need to evaluate on all 53 benchmarks, only 8 is enough

Benchmark Type

Most Correlat Benchmark

Object recognition Reasoning (Counting) Reasoning (Spatial) Relation Texture Non-Natural Images Robustness Corruption ImageNet-1 CountBenck DSPR Positio VG Attributi DTD Resisc45 ImageNet-v ImageNet-v

ted «	Correlation Value
k	0.82
h	0.76
on	0.29
ion	0.57
	1
	0.72
$^{\prime}2$	0.81
С	1

03 Results No need to evaluate on all 53 benchmarks, only 8 is enough

Benchmark Type

Most Correlat Benchmark

Object recognition Reasoning (Counting) Reasoning (Spatial) Relation Texture Non-Natural Images Robustness Corruption

ImageNet-1 CountBench DSPR Positie VG Attributi DTD Resisc45 ImageNet-v ImageNet-c

Takes **5 minutes** on a single GPU to evaluate on the 8 set of Benchmarks

ted c	Correlation Value
k	0.82
h	0.76
on	0.29
ion	0.57
	1
	0.72
$\cdot 2$	0.81
С	1

01 Introduction Outline

• Does Scaling **Models** helps in performance?

Not for relational understanding and reasoning tasks!

• How do I select a **Model** for my task?

Based on the task, or EVA02...

• Do we need to evaluate on all these **Benchmarks**?

No, 8 is all you need!

03 Results UniBench Ease of Use

```
import uni_bench
from torchvision.datasets import MNIST

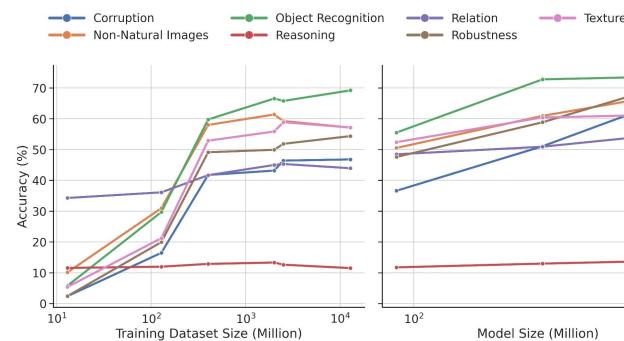
evaluator = uni_bench.Evaluator()

# add a new model
evaluator.add_model(vision, text, tokenizer, model_name)
#
# add a new benchmark, accepts any torch.utils.data dataset
# evaluator.add_benchmark(MNIST)
# evaluator.evaluate()
# add a new benchmark()
# ad
```


03 Results UniBench

reveals the limits of scaling

for visual reasoning & relationals



vision-language model **benchmarks** in a <u>unified codebase</u>

50+

Repo: <u>github.com/facebookresearch/unibench</u>

runs **5 minutes** on a single GPU

for representative capabilities



