SynRS3D: A Synthetic Dataset for Global 3D Semantic

Understanding from Monocular Remote Sensing Imagery

Jian Song^{1,2} Hongruixuan Chen^{1,2} Weihao Xuan^{1,2} Junshi Xia² Naoto Yokoya^{1,2}

¹The University of Tokyo, Japan ²RIKEN, Japan

Overview

Remote Sensing Image Processing

Task 1: Land Cover Mapping

Task 3: Building Change Detection

Task 2: Height Estimation

Challenges

• Expensive to build a real-world remote sensing benchmark dataset

• Domain shift & Covariate Shift

Way to Solve the Challenges: Synthetic Dataset with UDA

The SynRS3D Acquisition Protocol

Texture Generation

Functional Process

Stable Diffusion project: https://huggingface.co/spaces/stabilityai/stable-diffusion

Examples of SynRS3D Dataset & Statistics

Main Characteristics

- Mimicking six city styles from around the world.
- > Height distribution and land cover category distribution more closely resembling Real-World data.

RS3DAda: Unlock the Potential of the SynRS3D:

Step 1: Train on source domain dataset (Synthetic)

Step 2: Generate pseudo labels from target dataset (Real-World)

Step 3: Train on target dataset with pseudo labels

Key Ideas

- Unleashing the power of large-scale unlabeled Real-World data.
- Forcing cooperation between land cover mapping and height estimation tasks.
- Utilizing prior knowledge of remote sensing images.

Experimental Setting & Evaluation Datasets

	Real-World Height Estimation Datasets										
	Types	Datasets	Region	Height mean&std	Channel						
Relatively easy to access and simple real-world datasets.	Target Domain 1	Houston [103] JAX [42] OMA [42] GeoNRW_Urban [4] GeoNRW_Rural [4] Potsdam [77]	US US US Germany Germany	[3.07, 5.02] [4.73, 9.02] [2.37, 5.27] [2.46, 4.31] [2.03, 4.21] [3.02, 5.68]	RGB RGB RGB RGB RGB RGB						
Difficult to access and more challenging real-	Target Domain 2	ATL [12] ARG [12] Nagoya [14] Tokyo [14] Vaihingen [77]	US Argentina Japan Japan Germany	[8.40, 13.41] [3.90, 4.29] [7.36, 11.84] [15.73, 22.77] [2.36, 3.57]	RGB RGB RGB NIR, G, B						

Real-World Land Cover Mapping Datasets											
Types	Datasets	Region	Categories								
	OEM [98]	Global	8								
Torrect	Vaihingen [77]	Germany	6								
Target Domain	Potsdam [77]	Germany	6								
	JAX [42]	US	6								
	OMA [42]	US	6								

(b) Real-world land cover mapping datasets.

OEM spans 77 regions across 44 countries on six continents!

Scenario 1: Source-only/Zero-shot

Task: Height Estimation

Task: Land Cover Mapping The larger the better!

Datasets	JAX [42]			OMA [42]			Vaihingen [77]				Potsdam [77]					
Dutubetb	Ground	Tree	Building	mIoU	Ground	Tree	Building	mIoU	Ground	Tree	Building	mIoU	Ground	Tree	Building	mIoU
SMARS [73]	76.02	43.13	61.28	60.14	82.17	17.25	59.94	53.12	74.10	58.40	74.35	68.95	68.56	5.35	57.51	43.81
SyntheWorld [83]	74.63	54.74	64.18	64.52	81.29	45.83	56.56	61.23	72.69	68.09	75.67	72.15	69.09	32.49	55.88	52.49
SynRS3D	77.69	57.03	<u>68.96</u>	67.89	83.96	41.08	62.28	62.44	75.66	68.58	79.61	74.61	74.26	35.34	69.46	59.69

Takeaway

The SynRS3D dataset outperforms all existing RS synthetic datasets.

Scenario 2: Combining SynRS3D with Real Data

(a) Height Estimation.

The smaller the better!

The larger the better!

(b) Land Cover Mapping.

Takeaway

> The SynRS3D dataset serves as a valuable complement to real-world datasets, especially when available data is limited.

Scenario 3: Transfer SynRS3D to Real-World (RS3DAda)

Task: Land Cover Mapping

Model	Bareland	Rangeland	Developed	Road	Tree	Water	Agriculture	Buildings	mIoU
Source-only	8.69	37.95	22.54	49.05	60.16	46.64	35.40	65.19	40.70
DAFormer [33]	12.54	41.16	10.88	43.88	62.56	77.55	62.62	59.10	46.29
RS3DAda	19.92	47.61	18.41	44.06	61.04	71.66	63.73	59.42	48.23
Train-on-OEM	50.04	59.10	58.18	65.39	73.07	83.65	76.36	80.88	68.34

Task: Height Estimation

Model	MAI	E↓	RMS	SE↓	Accu	Accuracy Metrics [17] ↑			$F_1^{HE}\uparrow$		
Avg. T.D.1	Whole	High	Whole	High	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
Train-on-T.D.1 Source Only RS3DAda	1.272 2.557 2.148	3.363 5.617 4.921	2.381 4.128 3.593	4.329 6.705 6.024	0.379 0.123 0.185	0.463 0.192 0.258	0.510 0.246 0.318	0.617 0.372 0.418	0.710 0.491 0.554	0.742 0.552 0.623	
Avg. T.D.2	Whole	High	Whole	High	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
Train-on-T.D.1 Source Only RS3DAda	5.378 6.117 4.866	8.302 8.923 7.227	8.301 9.221 7.584	10.714 11.443 9.594	0.146 0.125 0.182	0.244 0.223 0.299	0.336 0.312 0.389	0.384 0.365 0.485	0.535 0.514 0.621	0.627 0.601 0.689	

Training curves

Takeaway

- RS3DAda has greatly unlocked the potential of the SynRS3D dataset.
- RS3DAda has significantly stabilized the training process of the SynRS3D dataset.

3D Semantic Reconstruction Outcomes

By-Product 1: Building Change Detection

Peformance evaluation of building change detection task on WHU-CD [38] dataset.

Train on	DTCDSCN 55 ChangeFormer 5 ChangeMamba 9							DinoMamba	
	IoU	F1	IoU	F1	IoU	F1	IoU	F1	
SMARS [73]	26.84	42.55	18.67	31.88	42.50	59.63	48.11	64.87	
SyntheWorld [83]	30.17	46.53	41.73	58.87	47.26	64.10	54.20	70.14	
SynRS3D	33.09	49.84	35.00	51.94	52.94	69.08	61.60	76.00	
Real	58.31	73.67	79.98	88.88	88.44	93.87	87.57	93.38	

Peformance evaluation of building change detection task on LEVIR-CD+ [8] dataset.

Train on	DTCDS	SCN [55]	Change	Former [5]	Change	Mamba [9]	DinoN	Iamba
	IoU	F1	IoU	F1	IoU	F1	IoU	F1
SMARS [73]	11.70	21.53	15.67	27.58	27.50	42.50	30.85	47.31
SyntheWorld [83]	21.16	35.28	23.31	38.12	28.28	44.30	48.78	65.46
SynRS3D	25.82	41.30	23.33	38.14	30.39	46.78	49.63	66.23
Real	63.44	77.63	67.48	80.58	77.39	87.25	74.12	85.14

Peformance evaluation of building change detection task on the SECOND [105] dataset.

Train on	DTCD	SCN [55]	Change	Former [5]	Change	Mamba [9]	DinoN	/lamba
	IoU	F1	IoU	F1	IoU	F1	IoU	F1
SMARS [73]	17.26	29.88	23.30	38.09	29.85	46.15	35.20	51.07
SyntheWorld [83]	21.00	35.07	26.44	42.06	27.23	43.02	37.61	54.71
SynRS3D	33.52	50.32	31.36	47.90	38.88	56.02	39.18	56.33
Real	58.78	74.04	60.08	75.06	67.61	80.68	67.65	80.71

By-Product 2: Disaster Mapping

Study Case 2: 2023 Turkey Earthquake Study Case 1: 2023 Hawaii Wildfire Damage Reference Pre-event RGB Post-event RGB Pre-event RGB Post-event RGB **Damage Reference** Possibly Damaged Damaged Destroyed ****// **Height Difference** Pre-event Height Prediction Post-event Height Prediction **Height Difference**

Images@Google Satellite & Bing Satellite.

14 Images@CNES/Airbus, Maxar Technologies.

Pre-event Height Prediction Post-event Height Prediction

Summary

- Dataset
 - **SynRS3D** the largest synthetic dataset for remote sensing, with high-res RGB images, land cover classes, and height references.
- Method
 - **<u>RS3DAda</u>** the first multi-task UDA model for RS syn-to-real adaptation.
- Real-world Validation
 - Benchmarked in <u>3 scenarios</u> on real RS datasets, showing strong performance gains.
- Broad Applicability
 - Building change detection
 - Disaster mapping