

Empowering and Assessing the Utility of Large Language Models in Crop Science

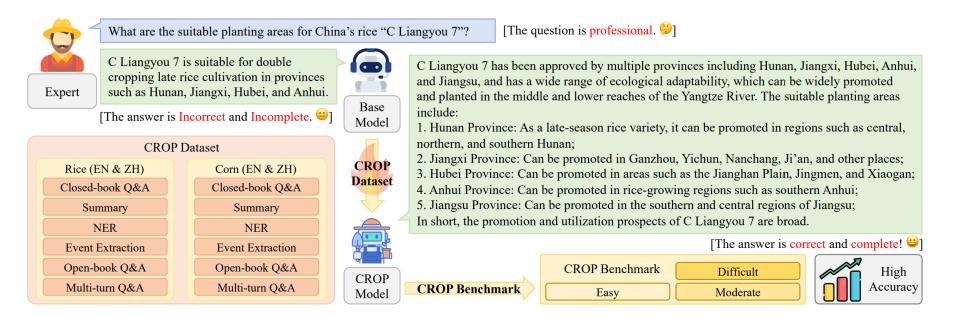
Hang Zhang¹*, Jiawei Sun¹*, Renqi Chen¹*, Wei Liu¹, Zhonghang Yuan¹, Xinzhe Zheng¹, Zhefan Wang¹, Zhiyuan Yang⁴, Hang Yan¹, Hansen Zhong¹, Xiqing Wang³, Wanli Ouyang¹, Fan Yang^{2†}, Nanqing Dong^{1†}

¹ Shanghai Artificial Intelligence Laboratory ² Yazhouwan National Laboratory ³ China Agricultural University ⁴ Hangzhou Dianzi University

www.shlab.org.cn

Motivation for the CROP

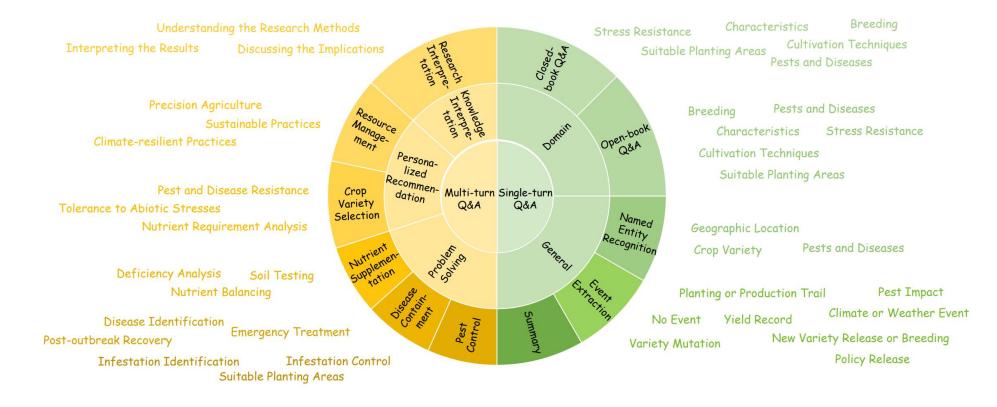
- Crop cultivation has historically been a significant challenge, with uncertainties in harvest yields due to factors like weather and pest diseases. These issues can lead to reduced agricultural output and food shortages.
- Large language models (LLMs) can generate professional knowledge and context in response to user inquiries, finding applications in various fields such as legal consulting and clinical management.
- However, LLMs currently face limitations in specific areas, such as pest management, and the existing datasets for agricultural evaluation are insufficient in quantity and locality.



Overview of the CROP

To harness the full potential of LLMs for crop science, we propose a suite called CROP, which encompasses

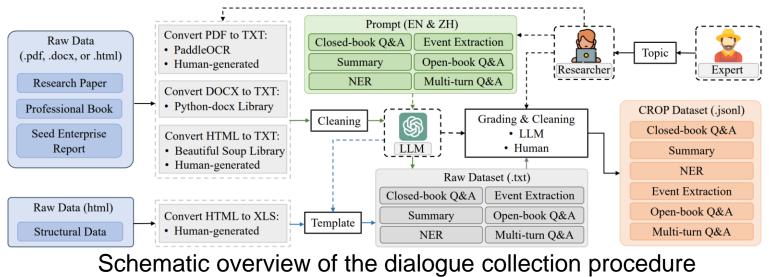
- an extensive instruction tuning dataset, designed to enhance the domain-specific proficiency of LLMs in crop science.
- a meticulously constructed benchmark, aimed at assessing the performance of LLMs across a variety of domain-related tasks.

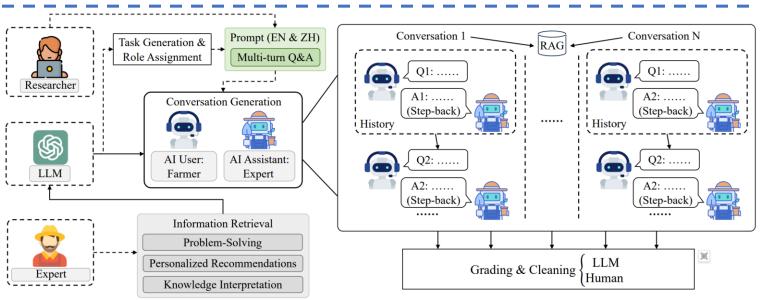


CROP Dataset Collection

- Raw data is first converted to TXT or XLS format using text extraction tools.
- Prompt an LLM to either generate Q&As from unstructured data or design templates that transform structured data into dialogue format.
- Filtering steps with both human and LLM involved.
- An LLM creates tasks under the guidance of domain experts and assigns roles to two agents.
- Using task-dependent prompts from researchers, the LLM generates dialogues with RAG.

□ Filtering steps.





Schematic overview of the multi-turn dialogue dataset collection procedure

The single-turn dialogues comprise 210,038 high-quality samples. It contains 140,056 dialogue samples for rice and 69,482 for corn.

CROP Dataset Analysis

Cereal	Туре	Task	Abbr.	English Q&A	Chinese Q&A	Total	
Rice	Domain	Closed-book Q&A	CQA	42,951	83,396	126,347	
	Domain	Open-book Q&A	OQA	2,430	2,037	4,467	
	General	Event Extraction	EE	1,891	1,030		
		Named Entity Recognition	NER	2,003	1,604	9,742	
		Summary	Summary	1,586	1,628		
	Domain	Closed-book Q&A	CQA	25,259	27,667	52,926	
		Open-book Q&A	OQA	3,202	3,047	6,249	
Corn		Event Extraction	EE	2,245	1,322		
		Named Entity Recognition	NER	2,008	1,316	10,307	
		Summary	Summary	1,559	1,857		
Others*			_			<1000	
Overall				85,134	124,904	210,038	

Composition of single-turn dialogues

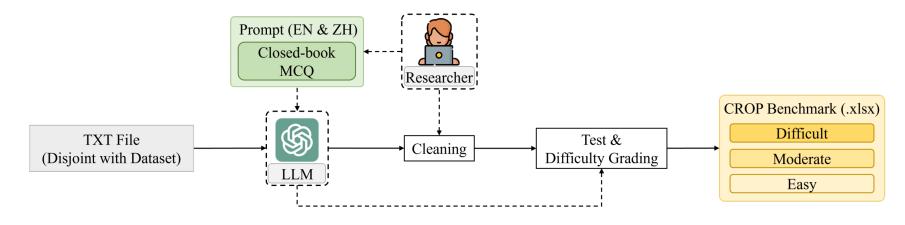
Cereal	Scenario	Task	English Q&A	Chinese Q&A	Total	
		Pest Control	14+71	8+37	130	
	Problem Solving	Nutrient Supplementation	19 + 93	2+90+1	205	
Rice		Disease Containment	19+ 60	4+39	122	
	Personalized Recommendation	Crop Variety Selection	12+ 53	9+9	83	
	reisonalized Recommendation	Resource Management	4+ 110 + 1	5+ 50	170	
	Knowledge Interpretation	Research Interpretation	3+ 125+ 1	8+ 85	222	
		Pest Control	20+ 84	7+ 77	188	
	Problem Solving	Nutrient Supplementation	24+ 56	8+30	118	
Corn	-	Disease Containment	21+ 64	2+ 19 + 1	107	
Com	Personalized Recommendation	Crop Variety Selection	19+ 75	46+ 47	187	
	reisonalized Recommendation	Resource Management	8+94	1+69	172	
	Knowledge Interpretation	Research Interpretation	5+94+1	<mark>6+ 61</mark>	167	
Overall	_		1,150	721	1,87	

- The multi-turn dialogues include 1,871 high-quality samples.
- Each task within the multi-turn dialogues possesses a minimum of 80 samples.

Composition of multi-turn dialogues

CROP Benchmark Collection

We prompt an LLM to generate MCQs from TXT files. After additional filtering steps with both human and LLM involved, we get the CROP benchmark, comprising three difficulty levels.

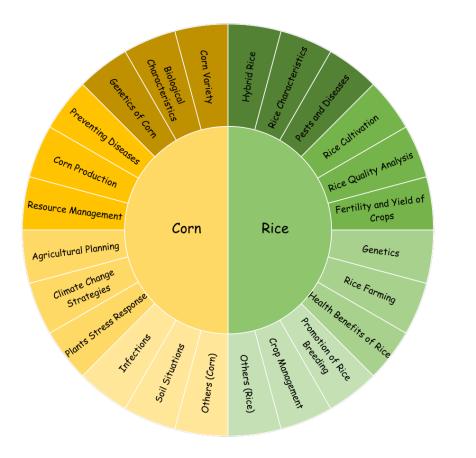


	-	-
Level	Count	Proportion
Easy Moderate Difficult	1,613 2,754 722	31.97% 53.72% 14.31%

We classify the 5,045 questions in the benchmark into three difficulty
levels: easy, moderate, and difficult.

CROP Benchmark Analysis

For corn-related MCQs, the most frequently occurring topics are corn variety, biological characteristics, and genetics of corn.
For rice-related MCQs, the most frequently occurring topics are hybrid rice, rice characteristics, pests, and diseases.



 CROP benchmark consists of 5045
Chinese and English MCQs and covers 22 countries across six continents.

Dataset	Language	Format	Size	Region
Certified Crop Advisor (CCA) Exam ¹	English	MCQs	312	United States
EMBRAPA ²	Portuguese	Test-based Inquires	1,000	Brazil
AgriExams ³	English	MCQs	1,723	India
CROP (Ours) English & Chi		MCQs	5,045	22 Countries

AI Assistant:

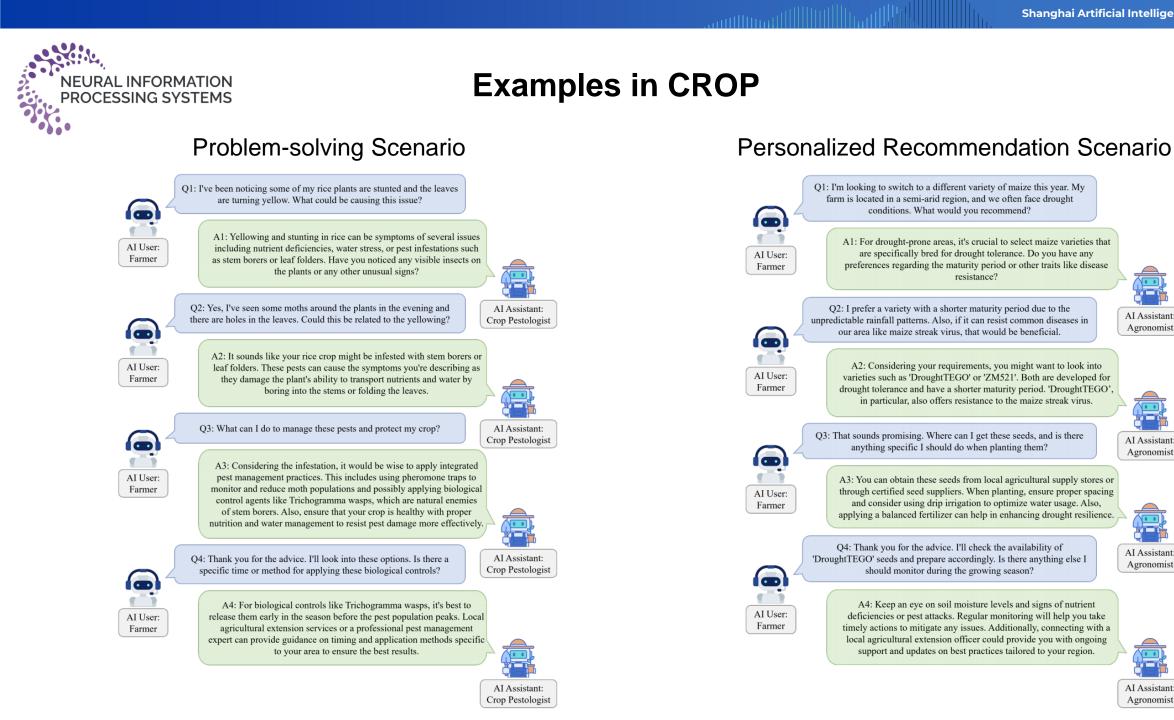
Agronomist

AI Assistant:

Agronomist

AI Assistant:

Agronomist



AI Assistant: Page 8 Agronomist

Experiments

- The performance of selected LLMs on the CROP benchmark.
- GPT-4, Claude-3, and Qwen struggle with difficult tasks, demonstrating the rationality of difficulty level division and the efficacy of the CROP benchmark.
- The findings indicate that when further fine-tuned with the CROP dataset, there is an average improvement of 9.2%.

	1		1	-	D'60 1			
Model	Access	Size	Overall ↑	Difficulty				
				Easy \uparrow	Moderate ↑	Difficult ↑		
Commercial LLMs	5							
$GPT-4^1$	API	N/A	0.856	1.000^{2}	1.000^{2}	0.000^{2}		
GPT-3.5 ¹	API	N/A	0.328	1.000^{2}	0.000^{2}	0.061		
Claude-3 ¹	API	N/A	0.900	0.982	0.968	0.458		
Qwen ¹	API	N/A	0.866	0.987	0.945	0.301		
Open-source LLMs								
LLaMA3-Base	Weights	8 B	0.348	0.443	0.341	0.161		
+CQIA	Weights	8 B	0.643 (+0.295)	0.791 (+0.348)	0.651 (+0.310)	0.281 (+0.120)		
+CROP	Weights	8 B	0.752 (+0.404)	0.866 (+0.432)	0.772 (+0.431	0.378 (+0.217)		
+CQIA+CROP	Weights	8B	0.754 (+0.406)	0.918 (+0.475)	0.779 (+0.438)	0.295 (+0.134)		
Qwen1.5-Base	Weights	7B	0.646	0.799	0.646	0.302		
+CQIA	Weights	7B	0.688 (+0.042)	0.880 (+0.081)	0.689 (+0.043)	0.258 (-0.044)		
+CROP	Weights	7B	0.676 (+0.030)	0.849 (+0.050)	0.688 (+0.042)	0.202 (-0.100)		
+CQIA+CROP	Weights	7B	0.709 (+0.063)	0.910 (+0.111)	0.704 (+0.058)	0.227 (-0.075)		
InternLM2-Base	Weights	7B	0.368	0.445	0.381	0.148		
+CQIA	Weights	7B	0.723 (+0.355)	0.861 (+0.416)	0.750 (+0.369)	0.317 (+0.169)		
+CROP	Weights	7B	0.748 (+0.380)	0.945 (+0.500)	0.761 (+0.380)	0.212 (+0.064)		
+CQIA+CROP	Weights	7B	0.768 (+0.400)	0.939 (+0.494)	0.794 (+0.413)	0.285 (+0.137)		

Experiments

□ The performance of fine-tuned LLMs under different training epochs and languages.

Different open-source LLMs show distinct convergence tendencies.

□ After four epochs of training, models did not exhibit a remarkable language bias. Results underscore the robustness of the model in multilingual contexts, ensuring its applicability in diverse linguistic scenarios.

Model	Epoch	Size	Overall ↑	Difficulty			Language		
				Easy ↑	Moderate ↑	Difficult ↑	Chinese ↑	English \uparrow	Variation \downarrow
LLaMA3-Base	N/A	8B	0.348	0.443	0.341	0.161	0.327	0.369	4.2%
+CQIA+CROP	1	8B	0.738	0.903	0.758	0.292	0.719	0.757	3.8%
+CQIA+CROP	2	8B	0.742	0.902	0.772	0.271	0.729	0.755	2.6%
+CQIA+CROP	4	8B	0.754	0.918	0.779	0.295	0.738	0.770	3.2%
Qwen1.5-Base	N/A	7B	0.646	0.799	0.646	0.302	0.667	0.624	4.3%
+CQIA+CROP	1	7B	0.702	0.910	0.717	0.183	0.725	0.680	4.5%
+CQIA+CROP	2	7B	0.670	0.875	0.677	0.181	0.690	0.649	4.1%
+CQIA+CROP	4	7B	0.709	0.910	0.704	0.227	0.717	0.686	3.1%
InternLM2-Base	N/A	7B	0.368	0.445	0.381	0.148	0.409	0.327	8.2%
+CQIA+CROP	1	7B	0.764	0.942	0.787	0.276	0.770	0.757	3.3%
+CQIA+CROP	2	7B	0.809	0.909	0.855	0.414	0.811	0.807	0.4%
+CQIA+CROP	4	7B	0.768	0.939	0.794	0.285	0.770	0.766	0.4%

Conclusions

- We propose the CROP dataset to improve the professional capabilities of LLMs in the crop science domain.
- We introduce the CROP benchmark to compensate for the absence of an open-source benchmark for evaluating models' expertise in this domain, which comprises MCQs for objective assessment.
- We hope that the proposed dataset and benchmark can foster AI research in crop science, facilitate knowledge transfer for agricultural practitioners, enhance crop yields, and contribute to solving hunger issues.

