ViLCo Video-Language Continual learning Benchmark

<u>Tianqi Tang</u>¹, <u>Shohreh Deldari</u>¹, <u>Hao Xue</u>¹, <u>Celso M de Melo</u>², <u>Flora D. Salim</u>¹

1 School of Computer Science and Engineering, UNSW, Australia 2 Army Research Laboratory, USA

This work supported by the International Technology Center Indo-Pacific (ITC-IPAC)

Why Multimodal Continual Learning

- One Crucial challenge in multimodal learning is continuous adaptation.
- There is always new data, new tasks, new query types...
- In multimodal scenarios, each mode of data can evolve together OR separately through
 - Emergence of new tasks
 - New data distribution

- ...

Q: When did I put the wood log?

A: from 45:12 to 45:51

Existing benchmark

ViLCo-Bench Pipeline

Data curation

Curated Samples from Ego4D [1] dataset.

Moments Queries (MQ):

Inputs: video & names of activities; Outputs: all temporal windows; Includes a taxonomy of **110** activities

Natural Language Queries (NLQ):

Inputs: video & text query; Outputs: temporal window where the answer is visible; Includes **13** question template.

Visual Queries (VQ):

Inputs: video & image query; Outputs: 2D bounding box Includes **2000** classes.

[1] https://ego4d-data.org/

ViLCo

Leaderboard and Experiments

- Separate experiments for each type of task (MQ, NLQ, VQ)
- Impact of visual encoders
- Visual features
- Impact of each episodic memory and SSL module

Table 5: The impact of various visual features

Visual Backbone	BwF↓	Avg R@1 (%)↑ IoU=0.3 IoU=0.5		Avg R@	©5 (%)↑ IoU=0.5
Timersformer [4]	2.4	30.80	22.82	51.93	40.64
X3D [9]	1.4	31.50	23.01	48.09	36.59
ViViT [3]	1.2	40.0	35.82	56.05	47.40
EgoVLP-v2 [31]	2.9	33.58	26.24	53.75	42.30

Table 7: Comparing EM (episodic memory) and SSL (self-supervised learning) modules.

Method	BwF↓	Avg R@1 (%)↑ IoU=0.3 IoU=0.5		
Naive ViLCo w/o EM ViLCo w/o SSL	18.8 4.4 5.3	22.74 32.61 33.70	17.58 25.86 24.49	
ViLCo	2.9	33.58	26.24	

Table 6: The impact of various visual features. SF(Slowfast [10]) and OV(Omnivore [15])

Mathad	Vision Paakhona		Avg R@1 (%)↑			Avg R@5 (%)↑		
		Dwr↓	IoU=0.3	IoU=0.5	mean	IoU=0.3	IoU=0.5	mean
ViLCo	EgoVLP-v2	2.9	33.58	26.24	29.91	53.75	42.70	48.23
ViLCo	EgoVLP-v2 + InternVideo	2.8	42.73	33.53	38.13	62.97	50.50	56.74
ViLCo	EgoVLP-v2 + InternVideo + SF	4.3	38.33	29.75	34.04	56.95	46.69	51.82
ViLCo	EgoVLP-v2 + InternVideo + SF + OV	5.59	37.79	28.18	32.99	60.94	50.24	55.59

Thank you!

ViLCo-Bench

