











# BenchX: A Unified Benchmark Framework for Medical Vision-Language PreTraining on Chest X-Rays

Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu\*, Rick Siow Mong Goh\*
Senior Scientist
IHPC, A\*STAR, Singapore











# Background





MedVLP learns generalizable visual representations from both medical images and reports

#### Why MedVLP?

- Rich and cross-modal knowledge captured from medical images and text
- Strong transferability for a wide range of medical tasks
- Core of multimodal medical foundation models

**Question: Which MedVLP?** 





# **Challenges**





| Method    | Pre-Train Data            | Image Encoder | Text Encoder          | Training Loss        |
|-----------|---------------------------|---------------|-----------------------|----------------------|
| ConVIRT   | MIMIC-CXR                 | R50           | ClinicalBERT          | ITC                  |
| GLORIA    | $\operatorname{CheXpert}$ | R50           | ClinicalBERT          | ITC                  |
| MedCLIP   | CheXpert, MIMIC-CXR       | R50/Swin-tiny | ClinicalBERT          | $\operatorname{SML}$ |
| MedKLIP   | MIMIC-CXR                 | 4-Stage R50   | ClinicalBERT          | ITC, CE              |
| M-FLAG    | MIMIC-CXR                 | R50           | CXR-BERT              | $\mathrm{RegL2}$     |
| MGCA      | MIMIC-CXR                 | R50/ViT-base  | ClinicalBERT          | ITC, CPA             |
| MRM       | MIMIC-CXR                 | ViT-base      | Custom BERT           | MIM, MLM             |
| PTUnifier | ROCO, MediCaT, MIMIC-CXR  | ViT-base      | BioMed ROBERTa        | ITC, MLM, ITM        |
| REFERS    | MIMIC-CXR                 | ViT-base      | $\operatorname{BERT}$ | ITC, CLM             |

## **Challenges in Benchmarking MedVLP Methods**

- Inconsistent Pre-Training Setup: Datasets, Train-Test Splits, ...
- Incompatible Fine-Tuning Protocol: Pre-processing, Training Strategies, Head, ...
- Incomprehensive Comparison: Limited Baselines and Tasks



## **Main Contributions**



We proposed **BenchX**, a unified MedVLP benchmark framework on CXRs

- Standardized Pre-Training Setup
- Unified Fine-Tuning Protocol
- Comprehensive Test Datasets and Tasks

We retrained and established baselines for 9 MedVLP methods across 4 tasks

**Goal**: Address *Discrepancies* in Datasets, Pre-Training, and Fine-Tuning Enable **Head-to-Head** Comparison and **Systematic** Analysis





# **BenchX Design: Training and Test Data**





- MIMIC-CXR: ~ 220,000 frontal images with reports in the official training set
- Transform: Resize 256x256 → random crop 224x224

## **Fine-Tuning Data**

- 4 Tasks: Classification, Segmentation, Report Generation, Image-Text Retrieval
- 9 Datasets from Diverse Resources
- Consistent Preprocessing: All scripts are provided

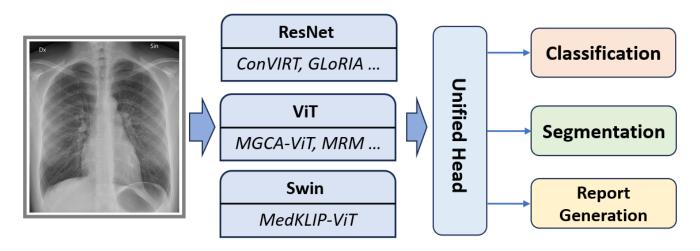
| Dataset           | Image Size         | Dataset Size | Task                 | Annotation                |
|-------------------|--------------------|--------------|----------------------|---------------------------|
| NIH ChestX-ray 14 | $224 \times 224$   | 112,120      | CLS                  | 14 Classes                |
| VinDr-CXR         | $512 \times 640$   | 18,000       | CLS                  | 28 classes, BBoxes        |
| COVIDx CXR-4      | $1024 \times 1024$ | 84,818       | CLS                  | 2 Classes                 |
| SIIM-ACR PTX      | $512 \times 512$   | 12,047       | CLS, SEG             | 2 Classes, Masks          |
| RSNA Pneumonia    | $1024 \times 1024$ | 26,684       | CLS, SEG             | BBoxes                    |
| IU-Xray           | $512 \times 640$   | 3,955        | RRG                  | Image-Report Pairs        |
| Object CXR        | $2048 \times 2624$ | 10,000       | $\operatorname{DET}$ | BBoxes, Ellipse, Polygons |
| TBX11K            | $512 \times 512$   | $11,\!200$   | CLS, SEG             | 3 classes, BBoxes         |
| MIMIC 5x200       | $512 \times 512$   | 1,000        | $\operatorname{RET}$ | Image-Report Pairs        |



(4)

# **BenchX Design: Fine-Tuning Pipeline**





#### **Flexible Architectures**

ResNet, ViT, Swin, and more

## **Compatible Task-Specific Heads**

- Classification: Linear Classifier
- Segmentation: UperNet
- Report Generation: R2Gen

## √ Training or testing in one line

# Training
python bin/train.py train.yml

# Testing
python bin/test.py test.yml



# **Summary of Experimental Results and Key Findings**





| Method                       | M-CLS (AUC)↑ | B-CLS (F1)↑ | SEG (mDice)↑ | RRG (BLEU4)↑ | Avg. Rank↓ |
|------------------------------|--------------|-------------|--------------|--------------|------------|
| ConVIRT                      | 85.37        | 65.56       | 78.89        | 14.8         | 6.38       |
| $\operatorname{GLoRIA}$      | 84.68        | 64.06       | 77.05        | 17.0         | 5.88       |
| MedCLIP-R50                  | 83.02        | 67.17       | 79.80        | 16.3         | 5.25       |
| $\operatorname{MedCLIP-ViT}$ | 84.00        | 68.33       | 78.76        | 15.1         | 5.75       |
| MedKLIP                      | 82.77        | 65.56       | 79.42        | 16.7         | 6.13       |
| M-FLAG                       | 77.73        | 62.96       | 72.77        | 14.7         | 10.00      |
| MGCA-R50                     | 83.47        | 64.69       | 79.85        | 15.9         | 6.50       |
| MGCA-Vi $T$                  | 86.10        | 67.03       | 80.32        | 17.0         | 2.38       |
| MRM                          | 86.18        | 67.72       | 80.66        | 16.5         | 2.00       |
| REFERS                       | 84.65        | 66.06       | 79.93        | 16.1         | 4.75       |

## **Key Findings**

- Performance Leadership: MRM and MGCA-ViT consistently outperform others
- > Progress Assessment: Some recent methods show less improvement than initially reported
- Unexpected Strength of ConVIRT: Properly trained earlier MedVLP methods could perform comparably or better than more recent approaches



## Conclusion





#### **BenchX Framework**

- Broad Coverage
  - ➤ Nine Datasets & Four Medical Tasks
- Fair and Transparent Comparison
  - > Standardized Benchmark Suites
  - > **Unified** Finetuning Protocols
- Good Extensibility
  - > Supports **Diverse** Model Architectures
  - > Easily **Adaptable** to New Models
  - > Facilitates **New Dataset** Integration

It is time to reassess prior advancements in MedVLP









# **Thank You**



Code and Models are Available