

Learning Superconductivity from Ordered and Disordered Material Structures

Pin Chen, Luoxuan Peng, Rui Jiao, Qing Mo, Zhen Wang, Wenbing Huang, Yang Liu, Yutong Lu

2024.11.12

Background

High-temperature Superconductors(HSC)

- Zero resistance, Meissner effect
- \triangleright Energy transmission, advanced electromagnetics, and quantum computing, etc.

Challenges for Designing HSC

- Theoretical calculation: HSC mechanism unclear/BCS theory is limited.
- \triangleright Hunt for HCS: "Holy Grail" of physics, a century-old challenge.

The First Room-Temperature Ambient-Pressure Superconductor

Sukbae Lee, Ji-Hoon Kim, Young-Wan Kwor

For the first time in the world, we succeeded in synthesizing the room-temperature superconductor ($T_c \geq 400$ K, 127°C) working at ambient pressure with a modified lead-apatite (LK-99) structure. The superconductivity of LK-99 is proved with the Critical temperature (T_c) , Zero-resistivity, Critical current (I_c) . Critical magnetic field (H_c), and the Meissner effect. The superconductivity of LK-99 originates from minute structural distortion by a slight volume shrinkage (0.48 %), not by external factors such as temperature and pressure. The shrinkage is caused by Cu^{2+} substitution of Pb²⁺(2) ions in the insulating network of Pb(2)-phosphate and it generates the stress. It concurrently transfers to Pb(1) of the cylindrical column resulting in distortion of the cylindrical column interface, which creates superconducting quantum wells (SQWs) in the interface. The heat capacity results indicated that the new model is suitable for explaining the superconductivity of LK-99. The unique structure of LK-99 that allows the minute distorted structure to be maintained in the interfaces is the most important factor that LK-99 maintains and exhibits superconductivity at room temperatures and ambient pressure

We need new method…

Background

Data Driven Method

- \triangleright Deep Learning: Bypass complex physical theories
- GNN extensively applied to model materials
	- Properties prediction
	- 3D structures generation

Inverse Materials Design

- \triangleright Given target properties to generate 3D structures
	- CDVAE/DiffCSP/SyMat

GNN: Represent atom/bond as node/edge

We need data to train models…

Related Dataset

□ SuperCon

 \geq 33,000, only chemical formulas

Jarvis-DFT

 \geq 1058, DFT calculated with BSC theory

S2S

 $\geq 1,065$, label materials with Superconductivity (Yes or No)

3DSC

9,150, elemental matching and manual doping (some not experimental observation)

SuperCon3D Dataset

Collection Methods

- \triangleright Formula matching between SuperCon and ICSD
- \triangleright Manually collection from references

Data Distribution

- \triangleright Cover 83 elements in periodic table
- Contain ordered and disorder structures
- \triangleright Five Types:
	- \checkmark Cuprate, H-riched, Heavy fermion, Ironbased, others
- \triangleright T_c values range from (0, 290] K

How to use SuperCon3D?

Real-world Superconducting Materials

 \triangleright Imperfection or disorder for tuning T_c.

Common disordered structures

- **Substitutional Disorder** (SD): a site is occupied by more than on atomic species.
- **Positional Disorder** (PD): one atom in the unit cell occurs position shift.
- **SD + PD** (SPD): both SD and PD can occur simultaneously.
- **Interstitial Disorder (ID)**: atoms occupying interstitial sites outside regular lattice positions in a crystal, unseen in SuperCon3D dataset.
- **Random**: unseen in SuperCon3D dataset.

Graph Representation: Order → Disorder \mathbb{F} G

Introduce atomic occupancy to redefine material structure

ID

Unit cell: $M = (L, S)$

$$
\hbox{\texttt{--} Lattice: } L=[l_1,l_2,l_3]\in\mathbb{R}^{3\times 3}
$$

$$
- \quad \text{Site } \mathbf{S}_i = (A_i, \mathbf{w}_i, \mathbf{x}_i)
$$

- Conposition
$$
\mathbf{A}_i = [a_{i,1}, \ldots, a_{i,m_i}] \in \mathbb{R}^{m_i \times k}
$$

- Atomic occupancy:
$$
\mathbf{w}_i \in \mathbb{R}^m
$$

- Cartesian coordinate:
$$
\mathbf{x}_i \in \mathbb{R}^3
$$

 $\{w_{i,1}+w_{i,2}+\cdots+w_{i,m_i}+w_{i,\text{interstital}}=1+\Delta\}$

SODNet: Structures -> T^c

 S_i is SD or SPD,

 S_i is PD.

SODNet:

- \triangleright Transformer-based GNN framework for representing ordered and disordered graphs.
- \triangleright SE(3)-equivariance through irreducible representation-based vector space features

Ordered and Disorder Graph Representation S_i is ordered,

- $\sum_{k=1}^{\infty} \text{Node embedding:} h_i = \begin{cases} \sum_{i=1}^{a_{i,1}}, \\ \sum_{k=1}^{a_{i,k}} w_{i,k} a_{i,k}, \end{cases}$
- \triangleright Edge embedding:

$$
\begin{aligned} \|\vec{r}_{ij}\|>R_i+R_j &\quad E=w_iw_jRBF(\|\vec{r}_{ij}\|),\\ x_{ij}=\varphi(h_i)+\varphi(h_j), &\quad f_{ij}=\varphi_f(x_{ij}\otimes c_E^{TP}SH(\vec{r}_{ij}))\end{aligned}
$$

 $w_{i,1}a_{i,1},$

DiffCSP-SC: Targeting T_c -> Structures

DiffCSP-SC: Equivariant diffusion for superconducting crystal structure generation

- Transformer-based architecture
- \triangleright Diffusion on C
	- \checkmark Gaussian Prior
	- DDPM-based Markov Chain
- Diffusion on \bm{F}
	- Uniform Prior
	- \checkmark Score Matching + Wrapped Normal Distribution

DiffCSP-SC: Superconductors Generation

DiffCSP-SC: Equivariant diffusion for superconducting crystal structure generation

 \triangleright Transformer-based architecture

Input Feature

- $\boldsymbol{h}_i^{(0)} = \rho(f_{\text{atom}}(\boldsymbol{a}_i), f_{\text{pos}}(t))$
-

Periodic E(3) Equivariant Denoising Model ϕ

 $\begin{split} \hat{\boldsymbol{h}}_i^{(s)} = \boldsymbol{h}_i^{(s-1)} + \sum_{j=1}^N \theta_{ij}^{(s)} v_{ij}^{(s)}\ \theta_{ij}^{(s)} = \textit{Softmax}\left(\frac{\mathbf{q}_i^{(s)\top}\mathbf{k}_{ij}^{(s)}}{\sqrt{d}}\right) \end{split}$ Message-Passing Blocks $\boldsymbol{m}_{ij}^{(s)} = \varphi_m(\boldsymbol{h}_i^{(s-1)}, \boldsymbol{h}_j^{(s-1)}, \boldsymbol{L}^\top \boldsymbol{L}, \psi_{\text{FT}}(\boldsymbol{f}_j - \boldsymbol{f}_i)),$ $\boldsymbol{m}_i^{(s)} = \sum^N \boldsymbol{m}_{ij}^{(s)},$ $\mathbf{q}_i^{(s)} = \varphi_q\left(h_i^{(s-1)}\right),$ $\frac{1}{\left|\bm{h}_i^{(s)}=\bm{h}_i^{(s-1)}+\varphi_h(\bm{h}_i^{(s-1)}, \bm{m}_i^{(s)})\right|}$ $\mathbf{k}_{ij}^{(s)} = \varphi_k\left(h_i^{(s-1)}, L^\top L, \psi_{\text{FFT}}(f_j - f_i)\right)\!,$ Lattice Denoising Term $\hat{\bm{\epsilon}}_{\bm{L}} = \bm{L}\varphi_L\Big(\frac{1}{N}\sum^N\bm{h}_i^{(S)}\Big).$ $\mathbf{v}_{ij}^{(s)} = \varphi_v\left(h_i^{(s-1)}, L^\top L, \psi_{\text{FFT}}(f_j - f_i)\right)$ $\hat{\bm{\epsilon}}_{\bm{F}}[:,i] = \varphi_F(\bm{h}_i^{(S)})$

SODNet

 D_{corf}

Ablation Studies

Model Performance

DiffCSP-SC

Model Performance

Pretrain on **1.1 million** stable material structures

Real-world Superconductors Validation

Application: Screening Known Structures

Screening entire ICSD, selecting 20 entries

14

[4]. Z Anorg Allg Chem, 640(5): 830–835, 2014.

Application: Generating Novel Structures

Generating Novel Structures (selecting 20 entries)

Why Transformer?

Relationship Between Structures and T^c

- \triangleright Characteristics of superconductors: large number of atoms and diverse elements.
- \triangleright Identify key atomic contributions to Tc.

Shows potential for atomic-level superconductor design.

Limitations & Solutions

Limitations

Data unevenness

- \checkmark Scarce High Tc data, uneven across 5 material types.
- \triangleright Elemental skewness
	- \checkmark Especially in Cu and O

Solutions

- \triangleright More high-quality data
- \triangleright Proposed pipeline
	- \checkmark SuperCon3D + DiffCSP-SC + DFT + SODNet + Wet Exp.

Conclusion

- **A new dataset SuperCon3D** containing both ordered-anddisordered crystal structures and experimental Tc
- We propose **two deep learning models** to showcase the possible methods for exploring
	- \triangleright SODNet: Tc predictor
	- ▶ DiffCSP-SC: Crystal Structures generator targeting high Tc
- Based on our proposed models, we present **a list of candidate superconductors** for future experimental validation
	- \triangleright First report of candidate disordered superconductors using GNN methods.

Thanks

Matgen Homepage