

- Xiaoyue Xu*, Qinyuan Ye*, Xiang Ren
- **NeurIPS 2024 (Datasets & Benchmarks Track)**

Background

Longer context windows in LMs!

GPT-4 Turbo with 128K context

Background

How to evaluate long-context models?

Realistic Benchmarks

reflect real-world performance X time-consuming, hard to scale

SCROLLS: Standardized CompaRison Over Long Language Sequences

Shaham et al., 2022

A new approach: Lifelong ICL and Task Haystack

Synthetic Benchmarks

easy to control and scale X limited to copying-and-pasting capabilities

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Single-task ICL & Task Haystack

Classify if the text is humorous. // Instruction Text: Label: humorous Text: ... Label: not humorous Text: <new text> Label: **?**

Lifelong ICL & Task Haystack

Determine if the sms message is ham or spam. Message: ... Label: ham. Message: ... Label: spam

Classify if the text is humorous. // Instruction **Text:** Label: humorous Text: **// Demonstrations** Label: not humorous

Categorize a tweet into six basic emotions: ... Tweet: ... **Emotion:** fear Tweet: ... **Emotion:** anger

Classify if the text is humorous. Text: <new text> Label: ?

000

\neg

Lifelong ICL & Task Haystack

Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack

3

Lifelong ICL & Task Haystack

Controllable

More tasks, more shots \rightarrow longer context

Determine if the sms message is ham or spam. Message: ... Label: ham. Message: ... Label: spam

Classify if the text is humorous. // Instruction Text: Label: humorous Text: Label: not humorous // Demonstrations

Categorize a tweet into six basic emotions: ... Tweet: **Emotion:** fear Tweet: **Emotion:** anger

Classify if the text is humorous. Text: <new text> Label: ?

 \neg

More than copying-and-pasting

ICL requires deeper, contextual understanding

With realistic elements

Based on realistic text classification tasks

Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack

3

Defining "Pass Rate" in Task Haystack

Single-task ICL

i Di

Classify if the text is humorous. // Instruction **Text:** ... Label: humorous Text: ... // Demonstrations Label: not humorous Text: <new text> Label: ?

Lifelong ICL

Determine if the sms message is ham or spam. Message: Label: ham. Message: Label: spam	SPAM
Classify if the text is humorous. // Instruction Text: Label: humorous Text: Label: not humorous // Demonstrations	je je
Categorize a tweet into six basic emotions: Tweet: Emotion: fear Tweet: Emotion: anger	
Classify if the text is humorous. Text: <new text=""> Label: ?</new>	

Model "passes" when performance of Lifelong ICL is not significantly worse than Single-task ICL

Benchmarking Long-context Language Models

In our 16-task 8-shot setting (context size=32k)

Needle-in-a-haystack Style Visualization

Needle-in-a-haystack

https://github.com/gkamradt/ LLMTest_NeedleInAHaystack

Mistral-7B (32k)

Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack

Needle-in-a-Task-haystack

Llama-3.1-70B (128k)

GPT-40 (128k)

Controlled Experiments

Setting	Input Prompt Example			
Baseline (Single-task ICL)	T1 Train	T1 Test		
Random	Random 7	Text T1 T	Train T1	Fest
Repeat	T1 Train	T1 Train	T1 Train	T1 T
Repeat+Shuffle	T1 Train	≭ T1 Tr	ain 🔀 T1	Train
Recall (Lifelong ICL)	T1 Train	T2 Train	T3 Train	T1 T
Replay	T1 Train	T2 Train	T3 Train	T1 T
Remove	T2 Train	T3 Train	T1 Test	
Paraphrase	T1 Train	T2 Train	T3 Train	C' T

- understanding.

Stress-Testing Long-Context Language Models with Lifelong ICL and Task Haystack

Recency bias and distraction both contribute the the failures in Task Haystack

Models are sensitive to paraphrased instructions, indicating a lack of deeper

learn a sequence of language tasks through in-context learning

diagnose how long-context LMs utilize contexts in Lifelong ICL

- We benchmark 14 models and find that
 - (1) SOTA model (GPT-40) fails ~11% cases
 - Llama-3.1-70b shows the best performance among open-weight models (2)
 - Other open-weight models lag behind by a large margin (3)

We introduce Lifelong ICL to evaluate long-context LMs, which challenges them to

We develop **Task Haystack**, which comprises 64 classification tasks, to assess and

(4) Long-context models are sensitive to recency bias, distraction and paraphrased instructions

