

A Benchmark for GUI Automation from Instructional Videos

Motivation: Simple Vision Task 👉 Complex Computer Task

1. VLMs (Vision-Language-Models)

O CLIP, Flamingo, LLaVA

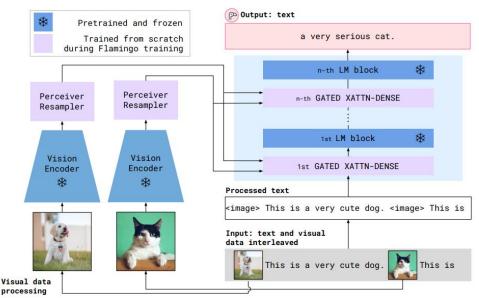


Figure 3 | Overview of the Flamingo model. The Flamingo models are a family of visual language model (VLM) that can take as input visual data interleaved with text and can produce free-form text as output. Key to its performance are novel architectural components and pretraining strategies described in Section 3.

Experts in specific vision tasks with Large-scale pretraining

Motivation: Simple Vision Task 👉 Complex Computer Task

4. Spread Source

6.Sprinkle Salt/Pepper

1. VLMs

5a. Layer Lettuce

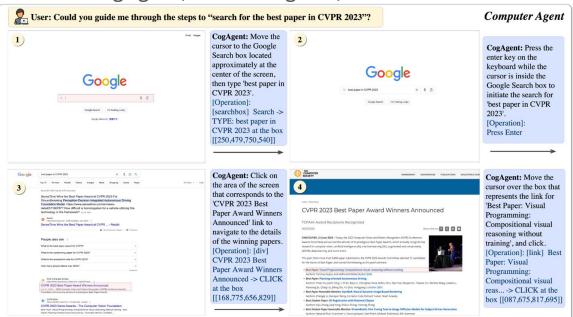
2. Multi-modal Agent

MM-ReAct, ViperGPT, AssistGPT

I am trying to create a short version of the video, can you suggest a shorter segment for each step?

2.Fry Bacon

5b.Add Tomato

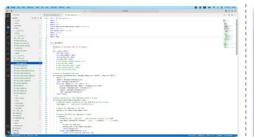


Solve complex vision tasks with LLM reasoning

Motivation: Simple Vision Task 👉 Complex Computer Task

- 1. VLMs
- 2. Multi-modal Agent
- 3. Actionable Model / Agent

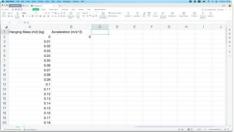
CogAgent, MM-Navigator, AssistGUI

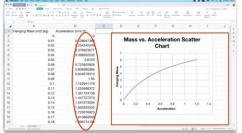


Interact with environment by actions

GUI (Graphical user interface) being the most representative environment

Motivation: Existing GUI benchmarks


- Existing GUI benchmarks
 - Simple Task can be clearly described by textual query


: Enter focused mode.

- 1. Adjust work layout and theme.
- 2. Play music.

: Fill in sheet, draw chart.

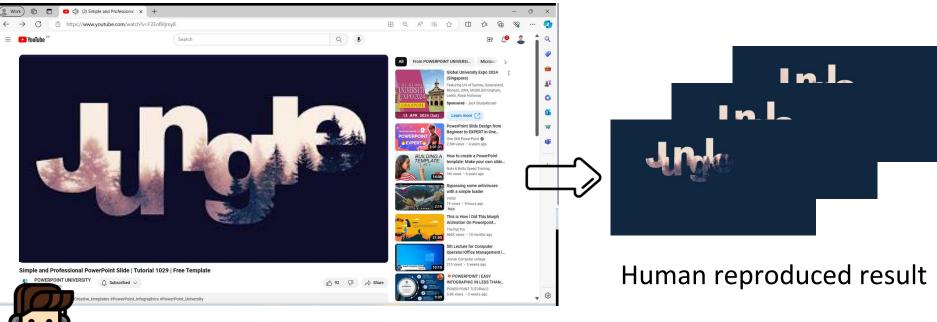
- 1. Calculate and fill out the spreadsheet.
- 2. Draw a bar chart.

🧶 : Create a webpage.

- 1. Generate the files required.
- 2. Compile and build to the webpage.

Credit to OS-copilot (2024)

Motivation: Existing GUI benchmarks


- Complex Task by
 - Visual Query e.g., How to create such effect in Powerpoint?

Challenging 1: Reverse Engineering from Vision Preview

Motivation: Existing GUI benchmarks

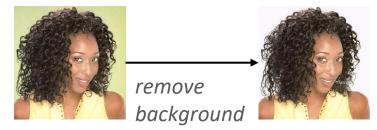
- Advanced Need
 - Visual-centric Query e.g., How to create such effect in Powerpoint?

Human Learning from Web Instructional Videos

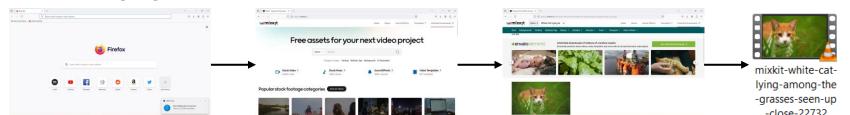
Challenging 2: Long Procedural & Multiple Actions

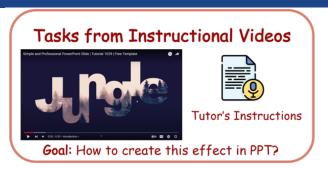
What's New on VideoGUI?

Creation e.g., Runway



Text2Video + a dolly zoom effect.

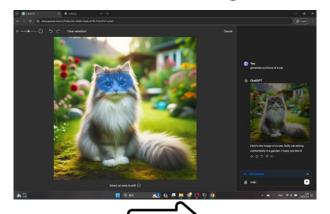

Editing e.g., PhotoShop


1. Novel Softwares

- Media creation, editing, browsing
- o Al Tools

• **Browsing** e.g., Download a video from mixkit.co

What's New on VideoGUI?



2. Novel Tasks

Source from Inst. Video e.g., interactive editing in DALLE-3?

What's New on VideoGUI?

Element: Rectangle

Coordinate: [1622, 983]

Visual-centric Software

R runway

InL

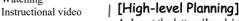
Reproduced

results

InL

Media Creation, Editing, AI tools

3. Hierarchical **Annotations**


High-level Planning

Mid-level Planning

Atomic-action Exec.

Goal: How to create this effect in PPT?

Watching

[Middle-level

A-1. Click on Insert

Action: Click

Coordinate: [208, 100]

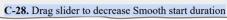
Element: Insert

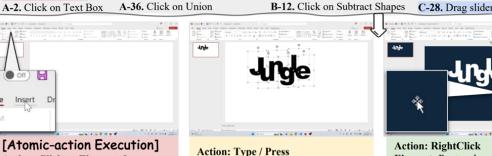
Planning]

A. Insert the letters 'Jungle' and merge them together as a pattern.

B. Insert a black rectangle to cover the letters and apply subtract on these letters to create a mask. Insert a Forest figure as background.

C. Insert the animation 'lines curve' and adjust the parameters.


A-33. Key board Type Ctrl + A


A-34. Click on Shape Format A-35. Click on Merge Shapes B-1. Click on 'Jungle' letter B-2. Click on Shape Format

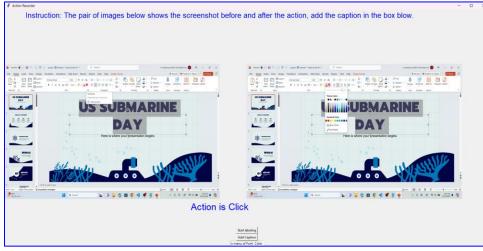
B-12. Click on Subtract Shapes

C-1. RightClick on Rectangle

C-2. Click on Format Shape

Element: Ctrl + A

Action: Drag


Element: slider of Smooth end **Coordinate:** [468, 344] to [281, 346]

How we VideoGUI collect

Figure 2: Illustration of pipeline, encompassing four phases: (i) High-quality instruction videos are manually selected. (ii) Participants replicate skills demonstrated in videos. (iii) Participants annotate task elements and procedures. (iv) Annotated data is validated manually for use.

VideoGUI Hierarchical Annotations

Video preview

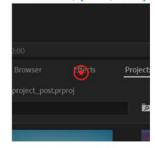
Start 🗀 End

Full task

Visual query: How to transform from [start] to [end] in Premiere Pro?

Textual query: Change the blue sky in the background of the picture to the red color at sunset.

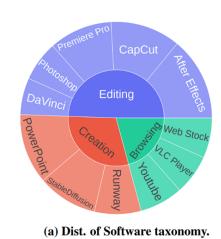
High-level Plans

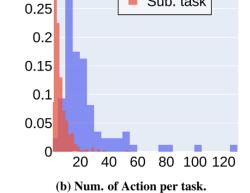

- a. Add ultra key effect to the video
- **b.** Get the color of the background
- **c.** Adjust the track order to the second track
- **d.** Add the new background photo to the first video track;

Mid.-level Plans

- a1. Click on Effects panel
- **a2.** Click on search bar in Effects panel
- a3. Key board Type 'ultra'
- a4. Click on 'Ultra Key'
- **a5.** Drag Ultry key effect from effects panel to the video. (Purpose: add ultra key to the video)

Atomic Actions


a1. Click, [216, 996]



VideoGUI Statistics

Benchmark	# Task	Platform	Source	Query format		lvg. F	Eval. dimension		
Denemial K	" lask	Tiatioim	Bource	Text Image	Video Act	tion Task SR.	Hier. Plan. Action Exec.		
Mind2Web [6]	2350	Web	Screenshot	/	7.3	1	✓		
PixelHelp [20]	187	Android	Emulator	1	4.2	/	✓		
AITW [10]	30K	Android	Emulator	/	6.5	/	✓		
AssistGUI [21]	100	Windows	Web Video	1	_	1			
OSWorld [22]	369	Win.+Ubuntu	Emulator	1	-	1			
V-WebArena [23]	910	Web	Screenshot	/ /	_	/			
VideoGUI SUBTASK FULLTASK	100000000000000000000000000000000000000	Win. +Web	Video + Human Demonstration	/ /	✓ 5.6 22.7	7	✓ ✓		

Full taskSub. task

0.3

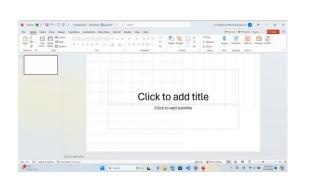
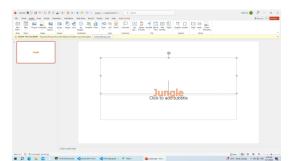
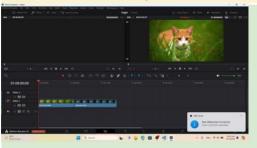



Figure 3: Data statistics of VideoGUI.

- 0 / 1 Success Rate?
 - Easy to be 0 and fail to receive enough signal



Success


Fail

- Hierarchical Assessment
 - Procedural Planning
 - High-level
 - Mid.-level
 - Atomic Action Execution
 - Click, Drag, Type / Press, Scroll

- Hierarchical Assessment & Multiple Settings
 - Procedural Planning **LLM Eval** (e.g., MM-Vet style) to overcome subjectivity

[Visual input]

[Visual init state]

[Visual output]

Textual query:

Insert the title effect 'Clean and Simple Lower Third' with text 'The cat scared the dog away' at the beginning of the "cameraB" video;

High-level Planning:

How [Visual input] to [Visual output]? GT:

A. Insert the title effect 'Clean and Simple Lower Third' with text 'The cat scared the dog away' at the beginning of the first clip.

B. Make the second clip color warmer by moving the gamma value closer to orange;

Middle-level Planning: [Init state] + Text

GT

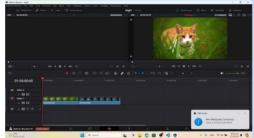
A1. Click on Effects

A2. Click on Titles

A3. Drag Clean and Simple Lower Third from original position to the beginning of the cameraB.mp4. (Purpose: insert the title effect)

A4. Click on Inspector

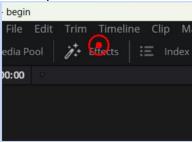
A5. scroll up 5


A6. Drag SAMPLE TEXT from the last letter to the first letter.

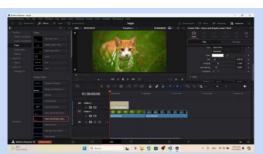
(Purpose: select all text)

A7. Key board Type 'The cat scared the dog away'

- Hierarchical Assessment & Multiple Settings
 - Action Execution (4 type)


Click; Drag; Type / Press; Scroll

1. Click: Where is the 'Effects'?


3. Drag: How to drag SAMPLE TEXT from the last letter to the first letter.


GT: [289, 66]

GT_Start: [1645, 393] **GT End:** [1415, 381]

2. Scroll: Should I scroll up / down / not to find the text box?

4. Type / Press: Please type "The cat scared the dog away"

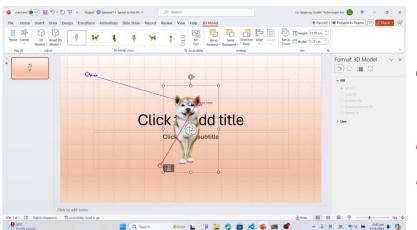
GT: UP

- Hierarchical Assessment & Multiple Settings
 - Procedural Planning
 - *High-level*: Visual Preview Milestones
 - *Mid.-level*: Milestone ← Action Narration Sequence

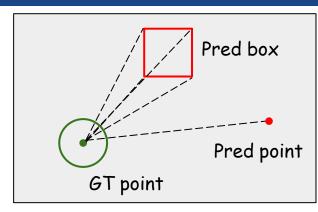
Visual [Hardest]: How

to

Visual + Text: Based



, Swap the first ppt and the second ppt


Text: Swap the first ppt and the second ppt

Action Metrics – Click / Drag – Grounding

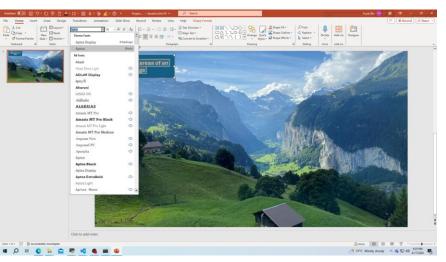
- Human GT: point [x,y]
- Model Predictions:
 - Boxes: CogAgent, Qwen-VL-Max
 - o **Points:** GPT-4-SoM
- Metrics
 - Distance
 - o Recall@r

e.g., drag the the dog to top-left

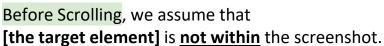
Drag is more strict and requires both start and end are satisfied

Action Metrics – Key / Press – Coding

I'm working on a computer task involving typing or pressing keys.


Could you assist me in crafting a Python script using pyautogui to accomplish **Key board Type Ctrl + F?**

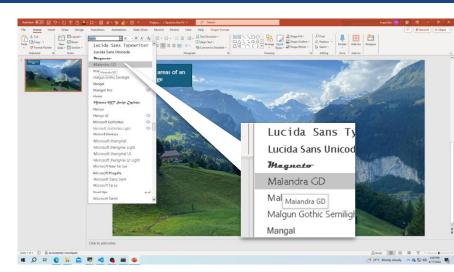
I've already set up the environment. Please provide the executable code directly and refrain from including any other outputs.


```
Certainly! Here is the Python script
                                Code Executing...
using pyautogui to simulate pressing
                                Output: ['ctrl 1', 'ctrl+f']
Ctrl + F:
                                GT: ['ctrl+f']
```python
import pyautogui
Press and hold the 'ctrl'
key
pyautoqui.keyDown('ctrl')
Press the 'f' key
pyautoqui.press('f')
Release the 'ctrl' key
pyautoqui.keyUp('ctrl')
```

**Figure 2:** Illustration of how we evaluate the key / press action.

# Action Metrics – Scroll – Multiple-Choice Question








Question: Should I scroll to find the maiandra GD

button?

Answer: Scroll Up / [ ] Scroll Down / No need



After Scrolling, we assume that [the target element] should be inside the screenshot.

Next Action: Click [the Maiandra GD button]

Question: Should I scroll to find the maiandra GD

button?

Answer: Scroll Up / Scroll Down / [ ✓ ] No need

### **Baseline Models**

- Model scope
  - Text LLM / Multi-modal LLM (1f or >1f)
- Interleaved Instructions
  - Text / Image / Image+Text / Image Pairs / Video / Video+Text / Video Pairs

Model	Suppo	ort Interleaved	d Instructions?	VideoGUI Evaluation (%)				
Wiodei	Text	Imgae (1f)	Media (> 1f)	High Plan	Mid. Plan	Action	Overall	
LLama3-70B [43]	✓			-	40.5	20.3	20.3	
Mixtral-8x22B [44]	✓			_	36.0	19.6	18.6	
GPT-3.5-Turbo [42]	✓			_	49.1	22.3	23.8	
CogAgent [19]	✓	✓		4.4	21.8	7.4	17.6	
Qwen-VL-Max [41]	✓	✓	✓	5.1	35.7	28.9	27.7	
Gemini-Pro-V [40]	✓	✓	✓	7.9	28.6	23.8	14.8	
Claude-3-Opus [39]	✓	✓	✓	9.7	45.6	39.4	38.7	
GPT-4-Turbo [36]	✓	✓	✓	14.3	52.9	34.4	34.9	
GPT-4o [36]	✓	✓	✓	17.1	53.5	47.6	50.6	

# Results on Procedural Planning

2. With clear text description, gpt3.5 or opensource is sufficient for planning

Model	High.	level Plan	ning (0 - 5)	<b>Middle-level Planning</b> $(0-5)$			
	Vision	Text	Vision & Text	Vision	Text	Vision & Text	
LLama3-70B [43]	-	2.62	_	_	2.02	-	
Mixtral-8x22B [44]	_	2.43	_	_	1.80	_	
GPT-3.5-Turbo [42]	_	2.67	_	_	2.46	-	
CogAgent [19]	0.22	1.12	1.23	_	1.32	1.09	
Qwen-VL-Max [41]	0.25	2.30	1.96	0.70	1.72	1.79	
Gemini-Pro-Vision [40]	0.39	2.35	1.45	0.34	1.61	1.43	
Claude-3-Opus [39]	0.48	2.54	2.17	0.66	2.26	2.28	
GPT-4-Turbo [36]	0.71	2.57	2.55	1.49	2.57	2.65	
GPT-4o [36]	0.86	2.68	2.46	1.78	2.45	2.68	
Avg. by models	0.49	2.37	1.97	0.99	2.02	1.98	

Query by **visual-preview** is extremely challenging; High-level is harder than middle-level

3. Vision & Text is even poor than Text-only,

understanding

Calling stronger Interleaved Multi-Modal

# Results on Action Execution

Model	Grd.?	1.	. Click	2. Drag		3. Type / Press		s 4. Scroll	Action
Model	Glu	Dist. ↓	Recall ↑	Dist. ↓	Recall ↑	Recall	Prec.	Acc.	Full
Random	-	49.9	0.7	47.2	0.0	-	-	31.3	8.0
		LL	Ms						
LLama3-70B [43]	_	-	_	_	_	84.9	81.3	· ·	20.3
Mixtral-8x22B [44]	1	· <u> </u>	_	_	_	82.6	78.5	Keyboard	19.6
GPT-3.5-Turbo [42] [42]	_	-	_	_	-	93.1	89.5	is-easy,	22.4
		Multi-modal LLMs				Text LLM is oke		okey	
CogAgent [19]	1	30.9	3.4	44.7	0.0	-	_	26.6	7.5
Qwen-VL-Max [41]	✓	46.8	0.0	42.0	0.3	84.3	73.0	42.2	28.9
Gemini-Pro-Vision [40]		40.7	5.0	40.8	0.0	86.4	82.2	7.8	23.8
Claude-3-Opus [39]		30.7	7.0	30.6	1.7	92.5	88.1	60.9	39.4
GPT-4-Turbo [36]		23.8	10.0	31.3	1.4	92.3	88.8	37.5	34.4
GPT-40 [36]		16.6	17.7	21.9	2.5	92.3	89.0	81.3	47.6
	Modulo	ir method	ls: LLMs + To	ols					
GPT-3.5 + OCR [42]	1	16.8	48.7	36.4	5.5	93.1	89.5	56.3	50.0
GPT-40 $+$ OCR [42]	1	12.0	<b>60.1</b> (+42.4)	25.7	<b>11.3</b> (+8.8)	92.3	88.8	82.8 (+1.5)	<b>56.3</b> (+8.7)
GPT-40 + SoM [33]	1	15.7	35.9 (+18.2)	22.9	3.0 (+0.5)	92.3	88.8	<b>89.0</b> (+7.7)	54.3 (+6.7)
GPT-40 is strong on visual perception, with resolution hint prompting even better than grounding model									

# Results on Action Execution

Madal

Model	Grd.?					. 1			
Model	Gru	Dist. ↓	Recall ↑	Dist. ↓	Recall ↑	Recall	Prec.	Acc.	Full
Random	-	49.9	0.7	47.2	0.0	-	-	31.3	8.0
		LL	Ms						
LLama3-70B [43]	· —	_	_	-	-	84.9	81.3	_	20.3
Mixtral-8x22B [44]	<u> </u>	_	_	_	_	82.6	78.5	_	19.6
GPT-3.5-Turbo [42] [42]	-	-	-	_	-	93.1	89.5	-	22.4
		Mult	i-modal LLMs						_
CogAgent [19]	1	30.9	3.4	44.7	0.0	-	-	26.6	7.5
Qwen-VL-Max [41]	✓	46.8	0.0	42.0	0.3	84.3	73.0	42.2	28.9
Gemini-Pro-Vision [40]		40.7	5.0	40.8	0.0	86.4	82.2	7.8	23.8
Claude-3-Opus [39]		30.7	7.0	30.6	1.7	92.5	88.1	60.9	39.4
GPT-4-Turbo [36]		23.8	10.0	31.3	1.4	92.3	88.8	37.5	34.4
GPT-40 [36]		16.6	17.7	21.9	2.5	92.3	89.0	81.3	47.6
	Modula	r method	ls: LLMs + Too	ols					
GPT-3.5 + OCR [42]	1	16.8	48.7	36.4	5.5	93.1	89.5	56.3	50.0

2. Drag

4. Scroll

82.8 (+1.5)

**89.0** (+7.7)

Action

**56.3** (+8.7)

54.3 (+6.7)

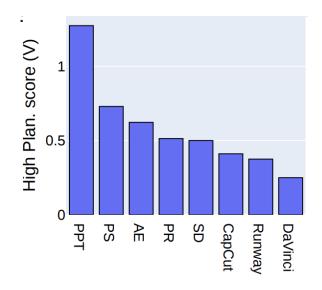
3. Type / Press

1. Click

 48.7
 36.4
 5.5
 93.1
 89.5

 60.1 (+42.4)
 25.7
 11.3 (+8.8)
 92.3
 88.8

 35.9 (+18.2)
 22.9
 3.0 (+0.5)
 92.3
 88.8


GPT-4o + OCR [42] ✓ 12.0 GPT-4o + SoM [33] ✓ 15.7

ce, Drag is the most


Both OCR / SoM boost performance,

### **Ablations**

- High-level planning scores by different software
- Mid.-level planning scores by action number



- PPT is the easiest one;
- Professional software like PS / AE are more challenging;
- Runway and CapCut, which are web-based, still relatively difficult to master.



- Planning becomes more difficult as the number of actions increases.

### Qualitative Results



#### **High-level Planning (Final visual effect)**

How to create such effect in Powerpoint?

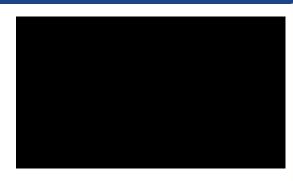
#### GT:

- 1. Set up a blank slide with a gradient fill background
- 2. Insert a 3D model of a shiba lun dog and adjust its size and position
- 3. Add a text 'Shiba Inu' in title box
- 4. Duplicate the first slide
- 5. Drag the title box to bottom with text 'Side view
- 6. Drag the dog to center and rotate to right
- 7. Apply the **Morph transition** to all slides;

#### GPT-40 [4]

- 1: Insert a 3D model of a Shiba Inu.
- 2: Add text 'Shiba Inu' and position it next to the 3D model.
- 3: Apply the 'Fly-in' animation to the 3D model from the left.
- 4: Add a second slide with a side view of the Shiba Inu 3D model.
- 5: Add text 'Side view' and position it below the 3D model.
- 6: Apply the 'Morph' transition between the two slides.

#### Gemini-Pro-V [2]


- 1. Insert a 3D model of a Shiba Inu dog.
- 2. Apply a "Rotate" animation to the dog, specifying the "Side" direction.
- 3. Insert a text box with the word "Side view" and position it below the dog.

#### Claude-3-Opus [2]

- 1. Insert an image of a Shiba Inu dog.
- 2. Add the text "Shiba Inu" next to the image.
- 3. Apply a 3D rotation effect to the dog image, rotating it from a side view to a front view.

Time:

### **Qualitative Results**



#### **High-level Planning (Final visual effect)**

How to create such effect in Powerpoint?

#### GT:

- 1. Set up a blank slide with a gradient fill background
- 2. Insert a 3D model of a shiba lun dog and adjust its size and position
- 3. Add a text 'Shiba Inu' in title box
- 4. Duplicate the first slide
- 5. Drag the title box to bottom with text 'Side view
- 6. Drag the dog to center and rotate to right
- 7. Apply the **Morph transition** to all slides;

#### GPT-40 [4]

- 1: Insert a 3D model of a Shiba Inu.
- 2: Add text 'Shiba Inu' and position it next to the 3D model.
- 3: Apply the 'Fly-in' animation to the 3D model from the left.
- 4: Add a second slide with a side view of the Shiba Inu 3D model.
- 5: Add text 'Side view' and position it below the 3D model.

#### 6: Apply the 'Morph' transition between the two slides.

#### Gemini-Pro-V [2]

- 1. Insert a 3D model of a Shiba Inu dog.
- 2. Apply a "Rotate" animation to the dog, specifying the "Side" direction.
- 3. Insert a text box with the word "Side view" and position it below the dog.

#### Claude-3-Opus [2]

- 1. Insert an image of a Shiba Inu dog.
- 2. Add the text "Shiba Inu" next to the image.
- 3. Apply a 3D rotation effect to the dog image, rotating it from a side view to a front view.

Time.



Init. visual state

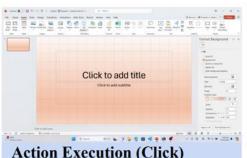
Final visual state

#### GPT-40 [5]

- 1. Click the 'Insert' tab in the ribbon at the top of the screen.
- 2. Click the '3D Models' button in the 'Illustrations' group.
- 3. Select 'From Online Sources...' from the dropdown menu.
- 4. In the search bar, type 'shiba inu dog' and press Enter.
- 5. Browse the results and click on the desired 3D model of a shiba inu dog.
- 6. Click the 'Insert' button to add the 3D model to the slide.
- 7. Click on the 3D model to select it.
- 8. Use the corner handles to adjust the size of the 3D model by clicking and dragging.
- 9. Click and drag the 3D model to position it in the desired location on the slide.

#### Middle-level Planning (Init. visual state + Text)

Insert a 3D model of a shiba lun dog and adjust its size and position

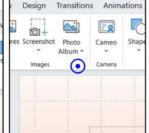

#### GT:

- 1. Click on Insert
- 2. Click on 3D Models
- 3. Click on Stock 3D Models
- 4. Keyboard Type dog then Enter
- 5. Click on Shiba-Inu dog with motion
- 6. Click on Insert
- 7. Drag the the dog to top-left
- 8. Drag the the lower right corner to enlarge the dog

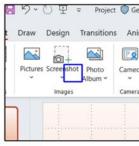
#### Gemini-Pro-V [3]

- 1. Click the 'Insert' tab.
- 2. In the '3D Models' group, click the 'From File' button.
- 3. In the 'Insert 3D Model' dialog box, navigate to the folder containing the shiba inu dog model.
- 4. Select the 'shiba inu.fbx' file and click the 'Insert' button.
- 5. The shiba inu dog model will be inserted into the slide.
- 6. Click and drag the model to reposition it.
- 7. Use the 'Scale' tool to resize the model.
- 8. Click the 'Format' tab.
- 9. In the 'Shape Styles' group, click the '3-D Model Styles' button.
- 10. In the '3-D Model Styles' gallery, select the desired style for the model.
- 11. Click the 'Close' button to close the 'Format Shape' dialog box.
  12. The shiba inu dog model will be updated with the selected style.

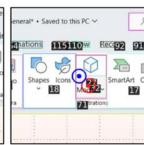
### Qualitative Results




Action Execution (Click) Click on '3D Models'

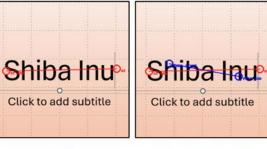



Action Execution (Drag)
Drag to select the text 'Shiba Inu'
from right to left








CogAgent



GT

GPT-4V Dist: 0.16, Recall: 0



GT GPT-4V-SoM Dist:0.19, Recall: 0



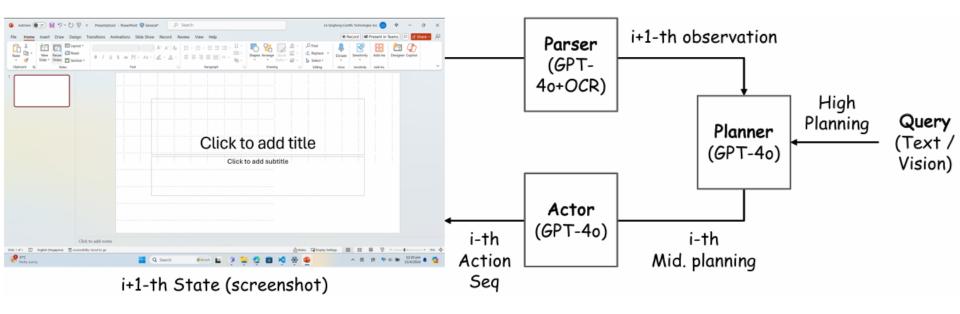


Action Execution (Scroll)
Should I scroll up / down / not to find the 'Calibri font type'?








GPT-4V-SoM

BrowalliaUPC

GT: Down GPT-40: Down GPT-4V: Up

Gemini-Pro-V: No need Claude-3-Opus: No need

# Using GPT-40 to build a mini Agent



### Real-world Simulator Result

Model	Settings	Vid	eoGUI Eval.	Full task Eval.		
	Settings	High Plan.	Mid Plan.	Action	Success Rate	Rank (Arena) ↓
GPT-4o [9]	Orig. Query (V)	17.1	53.5	56.3	0	2.50
	w. GT High Plan. w. GT High & Mid Plan.	100.0 100.0	53.5 100.0	56.3 56.3	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1.88 <b>1.38</b>

Table 13: Simulator Evaluation on VideoGUI's PPT full tasks.

Full tasks are extremely hard, SR. cannot provide human planning provides enough feedback. meaningful assistance

Model	Settings	VideoGU	I Eval.	Subtask Eval.		
	Settings	Mid Plan.	Action	Success Rate (%)	Avg. Round ↓	
GPT-4o [9]	Orig. Query (V+T) w. GT Mid Plan.	53.5 100	56.3 56.3	20.0 <b>50.0</b>	5.4 3.3	

Table 14: Simulator Evaluation on VideoGUI's PPT subtasks.

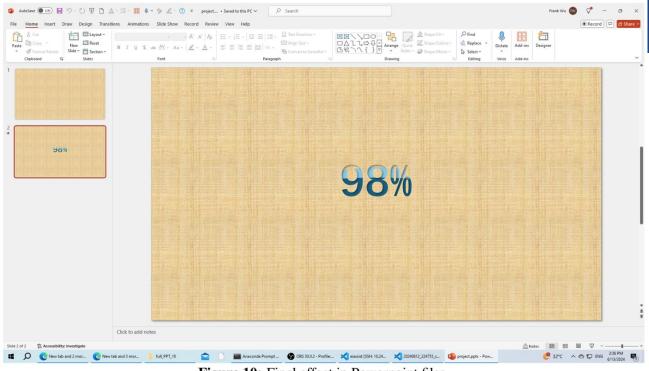
Mid-level planning improve subtask significantly

Agent planning is usually more redundant than human

# Comparison



Figure 8: Final effect in Powerpoint files.




(a) GPT-4o

(b) GPT-40 w. GT High Plan

(c) GPT-40 w. GT High+Mid. Plan

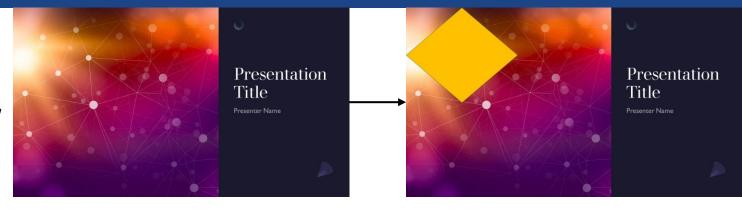
# Comparison

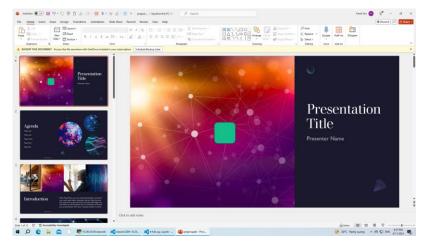


**Figure 10:** Final effect in Powerpoint files.

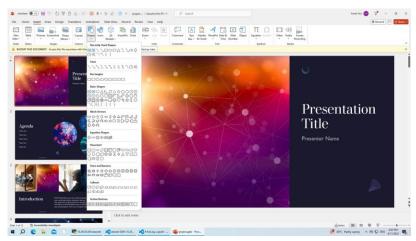


(a) **GPT-4**0


(b) GPT-40 w. GT High Plan


(c) GPT-40 w. GT High+Mid. Plan

# Error Analysis (Subtask)


#### Subtask:

On the first slide, draw an orange diamond on the top-left side;





**GPT-40: Final output** 



Failed to select the correct shape.