Benchmarking Structural Inference Methods for Interacting Dynamical Systems with Synthetic Data

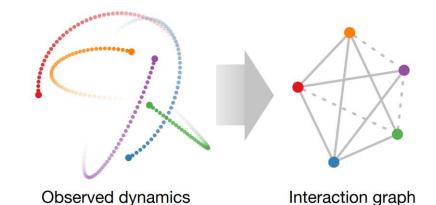
NeurIPS 2024

Aoran Wang, Tsz Pan Tong, Andrzej Mizera, Jun Pang

Structural inference in dynamical systems

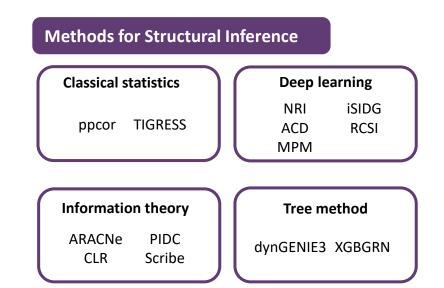
- In a dynamic system, the topological structure of interaction may be unknown
 → Structural Inference
- Observed data: node-level trajectories
- Example (charged particles)

Nodes	Particles
Node features	Position (x_1, x_2), Velocity (v_1, v_2)
Edges	Charges
Interaction	Electrostatics force



Problem

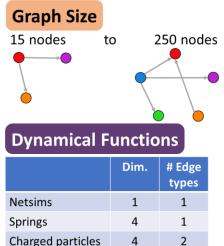
- Existing methods are evaluated on:
 - distinct datasets,
 - specific graph types
 - tailored to different research domains
 - unique underlying assumptions
- → Urges for a unified, systematic benchmarks across different fields



Our contributions

- Dataset for Structural Inference (DoSI)
 - 11 types of interaction graphs
 - Graph size from 15 to 250
 - 3 dynamic functions
 - 231 distinct graphs
 - 213,445 trajectories
- Comprehensive benchmarking
 - 13 structural inference methods
 - Measures accuracy, scalability, robustness and sensitivity
 - Over 706,800 CPU hours and 263,400 GPU hours

Types of	of Interaction Graphs	
BN	Brain Networks	1
CRNA	Chemical Reactions in Atmosphere	(
FW	Food Webs	
GCN	Gene Co-expression Networks	
GRN	Gene Regulation Networks	
IN	Intercellular Networks	
LN	Landscape Networks	
ммо	Man-made Organic Reaction Networks	
RNLO	Reaction Networks inside Living Organism	Ν
SN	Social Networks	5
VN	Vascular Networks	C



Results - Accuracy

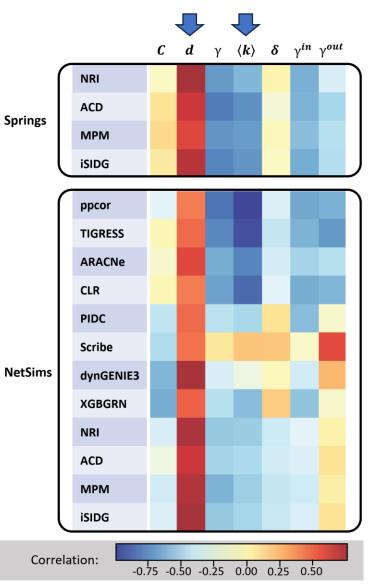
- Only deep learning can cater multi-dim. feature
- Classical statistical models have high ranks consistently

			BN	CRNA	FW	GCN	GRN	IN	LN	ммо	RNLO	SN	VN
$\left[\right]$	Springs	NRI	98.99	73.19	76.07	91.03	90.15	88.56	90.46	85.07	78.96	81.36	93.37
		ACD	99.46	73.95	75.72	92.81	89.04	87.88	91.07	91.14	86.15	80.76	91.52
\neg		МРМ	99.64	73.15	75.74	90.57	89.29	88.77	91.15	90.48	84.73	79.29	88.97
		iSIDG	99.69	74.57	76.31	92.30	90.26	89.47	90.66	90.63	84.16	81.40	93.42
		RCSI	99.45	75.06	76.08	92.07	91.79	90.51	91.00	91.49	84.96	82.86	94.38
	NetSims	ppcor	98.11	90.28	74.80	97.99	88.57	96.38	90.15	98.29	98.21	94.26	98.38
		TIGRESS	96.50	72.20	58.51	84.55	84.38	87.68	89.43	99.96	99.95	79.80	99.54
		ARACNe	96.79	77.33	63.26	93.30	70.18	85.69	76.67	95.39	96.05	80.37	98.03
		CLR	97.17	84.50	68.08	96.43	75.88	90.51	95.00	98.12	97.99	87.71	98.38
		PIDC	93.01	78.66	60.89	92.73	62.70	85.31	90.58	66.76	68.79	86.17	87.25
		Scribe	62.32	52.28	52.49	49.39	46.08	51.63	53.76	38.12	38.10	52.23	55.36
		dynGENIE3	97.61	51.93	49.63	48.65	59.21	61.66	54.81	27.40	30.34	54.60	96.33
		XGBGRN	100.00	87.01	64.83	95.42	82.96	99.63	97.26	69.34	78.43	99.56	98.83
		NRI	87.46	49.80	49.03	49.40	62.29	58.16	54.02	62.12	65.02	52.39	75.89
		ACD	89.92	49.57	50.31	46.46	66.64	57.60	56.77	63.38	59.55	54.56	70.85
		МРМ	93.50	50.38	51.99	58.83	66.71	59.35	54.58	63.58	63.00	55.37	76.44
		iSIDG	93.63	50.85	51.41	53.05	61.66	58.59	55.85	63.60	63.10	56.63	77.94
		RCSI	94.44	50.77	52.35	54.32	65.83	57.66	57.87	64.08	62.64	57.93	79.54
				Rank: L	ow					High			

Results - Correlation with Graph Properties

Model performances correlate:

- Positively with **average shortest path distance** *d*
- Negatively with average degree $\langle k
 angle$



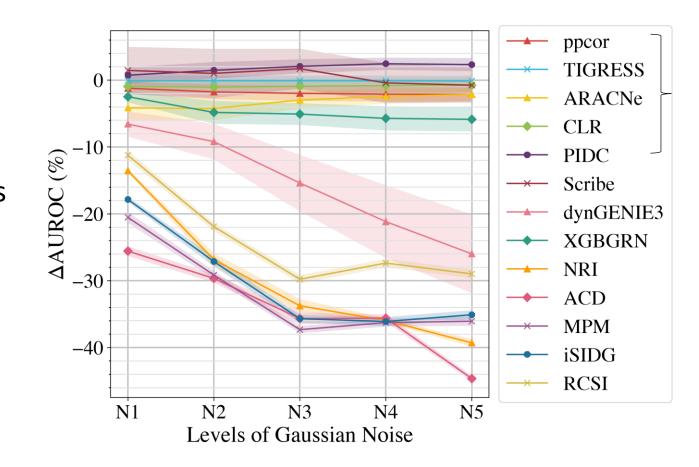
Results - Scalability

- All models **deteriorate as system size increases** except PIDC and dynGENIE3.
- Deep learning methods are most sensitive to graph size.
- Deep learning methods can infer multiple edge types, but the performance drops
- Classical statistical methods are highly scalable without a significant drop in accuracy

		n15	n30	n50	n100
Springs	NRI	93.42	86.39	85.37	80.52
	ACD	92.07	88.66	83.91	81.36
	МРМ	94.26	87.63	82.93	81.18
	iSIDG	94.62	88.36	85.68	81.37
	RCSI	94.80	89.25	85.73	82.82
NetSims	ppcor	93.22	93.59	93.30	92.51
	TIGRESS	89.11	87.61	86.15	83.49
	ARACNe	85.71	85.27	84.95	83.36
	CLR	90.27	91.19	90.54	87.91
	PIDC	76.73	77.63	79.50	83.54
	Scribe	52.47	51.10	49.30	47.76
	dynGENIE3	54.92	56.90	56.51	61.55
	XGBGRN	90.47	91.89	89.15	82.40
	NRI	65.73	61.06	57.46	56.85
	ACD	65.21	58.81	58.60	57.27
	МРМ	70.70	67.06	61.83	58.69
	iSIDG	68.18	61.88	61.06	58.43
	RCSI	69.12	64.48	61.52	58.48
		n15	n30	n50	n100
Charged	NRI	72.14	71.66	68.98	64.35
Particles	ACD	74.36	73.42	71.20	67.45
	МРМ	75.10	74.89	72.04	67.82
	iSIDG	75.67	75.02	73.12	69.37
	RCSI	75.80	74.11	72.04	66.75
Rank:	Low				High

Results - Robustness to Additive Noise

 Most methods based on classical statistics and information theory are resistant to various levels of Gaussian noise.



Summary

https://structinfer.github.io/

- Structural inference: finding interaction graph behind dynamic systems
- We provide the DoSI dataset with 11 types of graphs, 3 dynamic functions and 213,445 trajectories
- We present a unified, systematic benchmark across 13 models from different fields
- We found that:
 - Only current deep learning methods can tackle multi-dimension features
 - Classical statistical methods remain strong on accuracy, robustness and scalability
 - Model performances are correlated positively with average shortest path distance and negatively with negatively with average degree