CryoBench Diverse and Challenging Datasets for the Heterogeneity Problem in Cryo-EM

Minkyu Jeon

Rishwanth Raghu

Miro Astore

Geoff Woollard

Sonya Hanson

Ryan Feathers

Pilar Cossio

Ellen Zhong

What is biomolecular heterogeneity?

- functions.
- Existing tools for modeling structure, such as AlphaFold, are limited in their ability to predict different conformations or compositional states.
- study biomolecules in near-native conformational states from experimented data.

Dill & Maccallum, Science 2012

• Protein and other biomolecules form large, dynamic complexes that carry out essential biological

• Cryo-electron microscopy (cryo-EM), in contrast, is a technique providing a unique opportunity to

Dataset: Walls et al 2020

SNR ≈1 to 5%

Cryo-EM and 3D reconstruction

Electron Scattering Potential

Reconstruction as an inference problem

Goal: Estimate V and poses $\{\phi_i\}$ typically with maximum likelihood techniques

$\phi_i \in \mathrm{SO}(3) imes \mathbb{R}^2$ $\eta_i \sim \mathcal{N}$

Gaussian noise

Motivation

Reconstruction of molecular movies is now possible 1.

3DVA

Na_v 1.7 ion channel [EMPIAR-10261]

3DFlex

 $\alpha V\beta 8$ integrin [EMPIAR-10345]

DynaMight

Inner kinetochore [EMPIAR-11910]

CryoDRGN

Pre-catalytic spliceosome [EMPIAR-10180]

Motivation

- 1. Reconstruction of molecular movies is now possible
- 2. Methods often use simple toy motions for validation and comparison with other approaches

Motivation

- 1. Reconstruction of molecular movies is now possible
- 2. Methods often use simple toy motions for validation and comparison with other approaches
- 3. No ground truth exists for real data; Evaluation currently requires benchmarking-by-eye

- Design new synthetic datasets with challenging forms of heterogeneity 1. to motivate new tasks and methods development
- 2. Introduce **metrics** for quantitative comparison of methods for heterogeneity reconstruction
- 3. **Benchmark** existing state-of-the-art methods

CryoBench **Contributions**

Conformational Heterogeneity

IgG-1D

Diagnostic

Challenging

Compositional Heterogeneity

Methods

Discrete

Qualitative Results

IgG-1D

Spike-MD

Ribosembly

Tomotwin-100

Quantitative Results

Quantitative Results

Method	IgG-1D		IgG-RL		Ribosembly		Tomotwin-100		Spike-MD	
	Mean (std)	Median	Mean (std)	Med	Mean (std)	Med	Mean (std)	Med	Mean (std)	Me
CryoDRGN	0.351 (0.028)	0.356	0.331 (0.016)	0.333	0.412 (0.023)	0.415	0.316 (0.046)	0.321	0.340 (0.009)	0.34
DRGN-AI-fixed	0.364 (0.002)	<u>0.364</u>	0.348 (0.012)	<u>0.350</u>	0.372 (0.032)	0.375	0.202 (0.044)	0.207	0.301 (0.012)	0.30
Opus-DSD	0.335 (0.026)	0.339	0.343 (0.016)	0.346	0.362 (0.083)	0.382	0.237 (0.049)	0.251	0.229 (0.027)	0.24
3DFlex	0.335 (0.003)	0.335	0.337 (0.007)	0.337	-	-	-	-	0.304 (0.011)	0.30
3DVA	0.349 (0.004)	0.350	0.333 (0.014)	0.335	0.375 (0.038)	0.375	0.088 (0.04)	0.077	0.324 (0.010)	0.32
RECOVAR	0.386 (0.005)	0.388	0.363 (0.011)	0.363	0.429 (0.018)	0.432	0.258 (0.109)	<u>0.254</u>	0.362 (0.011)	0.36
3D Class	0.297 (0.019)	0.291	0.309 (0.01)	0.307	0.289 (0.081)	0.288	0.046 (0.026)	0.037	0.307 (0.023)	0.30
CryoDRGN2	0.32 (0.062)	0.342	0.301 (0.03)	<u>0.306</u>	0.341 (0.059)	0.356	0.076 (0.016)	0.072	0.245 (0.042)	0.26
DRGN-AI	0.351 (0.01)	0.352	0.329 (0.028)	0.333	0.341 (0.083)	0.367	<u>0.072 (0.015)</u>	0.072	0.279 (0.017)	0.28
3D Class abinit	0.13 (0.046)	0.119	0.184 (0.022)	0.188	0.144 (0.036)	0.138	0.032 (0.012)	0.031	0.206 (0.009)	0.20

- volume reconstruction quality (higher better, best 0.5)
- No method dominates across different forms of heterogeneity

• Per-image Fourier Shell Correlation (Per-image FSC) is a distributional metric measuring

Datasets and code: cryobench.cs.princeton.edu

Before running CryoBench, you will first install dependencies, as well as generate reconstruction results using your model(s) of choice:

X Installation Instructions

Running Reconstruction Models

