
EvoCodeBench: An Evolving Code Generation
Benchmark with Domain-Specific Evaluations

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, Yongbin Li

Peking University Alibaba Group

Introduction
• Evolving data

• Dynamically updated every period (e.g., 6 months) to avoid data leakage

• A domain taxonomy and domain labels

• Domain taxonomy consisting of 10 popular domains

• Domain-specific evaluations.

• Domain-Specific Improvement (DSI) and define LLMs’ comfort and strange
domains

Introduction
• Data leakage (aka data contamination)

• Training data of LLMs contains almost all open-source code repositories,
existing benchmarks probably have data leakages. Researchers have to
spend more effort to construct new benchmarks

• Lack of domain-specific evaluation

• Compared to comprehensive coding abilities, developers are more
concerned about the performance of LLMs in specific domains. However,
existing benchmarks lack domain labels or fall into narrow domains.
Besides, they ignore domain- specific evaluations and analyses.

Overview

Task and Metrics
• EvoCodeBench evaluates LLMs in repo-level code generation. This task

simulates the developers’ coding process in a working repository.

Functional Correctness

Recall of Reference Dependency

Data Construction
• Stage I: Repository selection and function scraping

• Stage II: Execution-based filtering

• Stage III: Automatic annotations

• Stage IV: Benchmark Construction

Advantages
• Latest repositories to avoid data leakage (October 2023 - March 2024)

• Diverse domains

• High data quality

Experiment Setting
• We use the latest data leakage detection approach CDD to check

EvoCodeBench-2403. CDD can detect whether LLMs have been trained on
specific benchmarks and their variants.

• Compared to a mainstream benchmark - HumanEval, the leakage rate of
EvoCodeBench- 2403 drops significantly to less than 3%.

• We think that EvoCodeBench-2403 is leakage-free and can provide
trustworthy evaluations in repo-level code generation.

Repo-level Code Generation
• ❶ Without context. We ignore contexts and directly generate the code based on

requirements and signatures.

• ❷ Local File (Completion). The local file denotes the code file where the reference code
is in. This setting simulates the scenario where developers continue to write code at the
end of a file. Besides the requirements and signatures, LLMs can access code contexts
above the reference code in the local file.

• ❸ Local File (Infilling). This setting simulates the scenario where developers infill code in
the middle of a file. Besides requirements and signatures, LLMs can see the code
contexts above and below the reference code in the local file.

Repo-level Code Generation

Case Study
• Compared to previous benchmarks, these LLMs’ performance in

EvoCodeBench-2403 drops dramatically.

• LLMs benefit from more code contexts in repo-level code generation.

• Uniquely successful case in the Local File (Completion) setting. Without
context, gpt-4 fabricated a non-existent field as cache directories,
generating the incorrect code. After introducing the local file, gpt-4
successfully invokes relevant functions and generates the correct code.

Domain Lessons
• EvoCodeBench shows superior LLMs in specific domains.

• EvoCodeBench uncovers the comfort domains and strange domains of specific LLMs.

• GPT-4 has the most comfort domains. Among all LLMs, only gpt-4 successfully solves some programming
tasks. However, gpt-4 performs worse than others in the Internet domain.

• StarCoder 2-15B unexpectedly performs well in the Database domain and even is comparable to gpt-4.

• The potential reason for comfort and strange domains is that the pre-training data mix of LLMs is different.
The finding can help model trainers analyze the shortcomings of existing LLMs and build more powerful code
LLMs.

Conclusion
• We introduce EvoCodeBench, an evolving code generation benchmark.

• EvoCodeBench is designed to address two limitations (i.e., data leakage and lack
of domain-specific evaluations).

• We design a programming domain taxonomy consisting of ten popular domains
and annotate samples with domain labels.

• We conduct extensive experiments on EvoCodeBench and reveal the actual
abilities of LLMs in real-world repositories. We also evaluate LLMs in different
domains and discover their comfort and strange domains.

• In the future, we will continuously release new versions of EvoCodeBench and
extend EvoCodeBench into other programming languages (e.g., Java and C++).

